login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062073 Decimal expansion of Fibonacci factorial constant. 31
1, 2, 2, 6, 7, 4, 2, 0, 1, 0, 7, 2, 0, 3, 5, 3, 2, 4, 4, 4, 1, 7, 6, 3, 0, 2, 3, 0, 4, 5, 5, 3, 6, 1, 6, 5, 5, 8, 7, 1, 4, 0, 9, 6, 9, 0, 4, 4, 0, 2, 5, 0, 4, 1, 9, 6, 4, 3, 2, 9, 7, 3, 0, 1, 2, 1, 4, 0, 2, 2, 1, 3, 8, 3, 1, 5, 3, 1, 2, 1, 6, 8, 4, 5, 2, 6, 2, 1, 5, 6, 2, 4, 9, 4, 7, 9, 7, 7, 4, 1, 2, 5, 9, 1, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The Fibonacci factorial constant is associated with the Fibonacci factorial A003266.

Two closely related constants are A194159 and A194160. [Johannes W. Meijer, Aug 21 2011]

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.5.

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison Wesley, 1990, pp. 478, 571.

LINKS

Harry J. Smith, Table of n, a(n) for n=1..5000

M. Griffiths, Symmetric rational expressions in the Fibonacci numbers, Fib. Q., 46/47 (2008/2009), 262-267. [N. J. A. Sloane, Dec 05 2009]

Simon Plouffe, Fibonacci factorials

Eric Weisstein's World of Mathematics, Fibonacci Factorial Constant

FORMULA

C = (1-a)*(1-a^2)*(1-a^3)... 1.2267420... where a = -1/phi^2 and where phi is the Golden ratio = 1/2 + sqrt(5)/2.

C = QPochhammer[ -1/GoldenRatio^2]. [Eric W. Weisstein, Dec 01 2009]

C = A194159 * A194160. [Johannes W. Meijer, Aug 21 2011]

C = exp( Sum_{k>=1} 1/(k*(1-(-(3+sqrt(5))/2)^k)) ). - Vaclav Kotesovec, Jun 08 2013

C = Sum_{k = -inf .. inf} (-1)^((k-1)*k/2) / phi^((3*k-1)*k), where phi = (1 + sqrt(5))/2. - Vladimir Reshetnikov, Sep 20 2016

EXAMPLE

1.226742010720353244417630230455361655871409690440250419643297301214...

MATHEMATICA

RealDigits[N[QPochhammer[-1/GoldenRatio^2], 105]][[1]] (* Alonso del Arte, Dec 20 2010 *)

RealDigits[N[Re[(-1)^(1/24) * GoldenRatio^(1/12) / 2^(1/3) * EllipticThetaPrime[1, 0, -I/GoldenRatio]^(1/3)], 120]][[1]] (* Vaclav Kotesovec, Jul 19 2015, after Eric W. Weisstein *)

PROG

(PARI) \p 1300 a=-1/(1/2+sqrt(5)/2)^2; prod(n=1, 17000, (1-a^n))

(PARI) { default(realprecision, 5080); p=-1/(1/2 + sqrt(5)/2)^2; x=prodinf(k=1, 1-p^k); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062073.txt", n, " ", d)) } \\ Harry J. Smith, Jul 31 2009

CROSSREFS

Cf. A003266, A003267, A003268, A056569, A062072, A062381, A135407, A181926.

Cf. A218490, A253924, A256831, A259314, A259405.

Sequence in context: A174789 A210865 A210861 * A021445 A011145 A177852

Adjacent sequences:  A062070 A062071 A062072 * A062074 A062075 A062076

KEYWORD

easy,nonn,cons

AUTHOR

Jason Earls, Jun 27 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 18:25 EDT 2019. Contains 324330 sequences. (Running on oeis4.)