login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123629 Expansion of b(q^2) * c(q^6) / (b(q) * c(q^3)) in powers of q where b(), c() are cubic AGM theta functions. 6
1, 3, 6, 11, 18, 30, 48, 75, 114, 170, 252, 366, 526, 744, 1044, 1451, 1998, 2730, 3700, 4986, 6672, 8876, 11736, 15438, 20207, 26322, 34134, 44072, 56682, 72612, 92680, 117867, 149400, 188758, 237744, 298554, 373838, 466836, 581412, 722266, 895014 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015

FORMULA

Expansion of (eta(q^3) / eta(q^6))^2 * (eta(q^2) * eta(q^18) / (eta(q) * eta(q^9)))^3 in powers of q.

G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - u*(6*v + 4*v^2).

Euler transform of period 18 sequence [ 3, 0, 1, 0, 3, 0, 3, 0, 4, 0, 3, 0, 3, 0, 1, 0, 3, 0, ...].

Convolution inverse is A123676. - Michael Somos, Feb 19 2015

Expansion of q * chi(-q^3)^2 / (chi(-q) * chi(-q^9))^3 in powers of q where chi() is a Ramanujan theta function. - Michael Somos, Feb 19 2015

G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = (1/4) * g(t) where q = exp(2 Pi i t) and g() is the g.f. for A123676. - Michael Somos, Feb 19 2015

a(3*n) = 6 * A128638(n). a(3*n + 2) = 3 * A233698(n). - Michael Somos, Feb 19 2015

a(n) ~ exp(2*sqrt(2*n)*Pi/3) / (2^(11/4)*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 10 2015

EXAMPLE

G.f. = q + 3*q^2 + 6*q^3 + 11*q^4 + 18*q^5 + 30*q^6 + 48*q^7 + 75*q^8 + ...

MATHEMATICA

nmax=60; CoefficientList[Series[Product[(1+x^k)^3 * (1+x^(9*k))^3 / (1+x^(3*k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 10 2015 *)

A123629[n_] := SeriesCoefficient[q*(QPochhammer[q^3]/QPochhammer[q^6])^2*(QPochhammer[q^2]*QPochhammer[q^18]/(QPochhammer[q]*QPochhammer[q^9] ))^3, {q, 0, n}]; Table[A123629[n], {n, 0, 50}] (* G. C. Greubel, Oct 09 2017 *)

PROG

(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^3 + A) / eta(x^6 + A))^2 * (eta(x^2 + A) * eta(x^18 + A) / (eta(x + A) * eta(x^9 + A)))^3, n))};

CROSSREFS

Cf. A123676, A128638, A233698.

Sequence in context: A147079 A281572 A152074 * A212484 A279100 A347415

Adjacent sequences: A123626 A123627 A123628 * A123630 A123631 A123632

KEYWORD

nonn

AUTHOR

Michael Somos, Oct 03 2006

EXTENSIONS

Typo in xrefs corrected by Vaclav Kotesovec, Oct 10 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 15:35 EDT 2023. Contains 361384 sequences. (Running on oeis4.)