login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123631
Expansion of q / (chi(-q) * chi(-q^11))^2 in powers of q where chi() is a Ramanujan theta function.
2
1, 2, 3, 6, 9, 14, 22, 32, 46, 66, 93, 130, 180, 244, 331, 444, 590, 780, 1024, 1334, 1730, 2234, 2867, 3664, 4660, 5904, 7449, 9364, 11728, 14638, 18211, 22584, 27927, 34436, 42342, 51924, 63523, 77512, 94364, 114624, 138920, 168012, 202786, 244270
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 22 sequence [ 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - u*v*(4 + 4*v).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u^2 + v^2)^2 - u*v * (1 + 3*(u+v) + 4*u*v)^2.
a(n) ~ exp(2*Pi*sqrt(2*n/11)) / (2^(11/4) * 11^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2017
EXAMPLE
G.f. = q + 2*q^2 + 3*q^3 + 6*q^4 + 9*q^5 + 14*q^6 + 22*q^7 + 32*q^8 + 46*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q / (QPochhammer[ q, q^2] QPochhammer[ q^11, q^22])^2, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
a[ n_] := SeriesCoefficient[ q / (Product[ 1 - q^k, {k, 1, n, 2}] Product[ 1 - q^k, {k, 11, n, 22}])^2, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
nmax = 60; CoefficientList[Series[Product[((1+x^k)*(1+x^(11*k)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^22 + A) / (eta(x + A) * eta(x^11 + A)))^2, n))};
CROSSREFS
Sequence in context: A128518 A022567 A134004 * A228364 A018060 A115856
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 03 2006
STATUS
approved