OFFSET
1,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 22 sequence [ 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - u*v*(4 + 4*v).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u^2 + v^2)^2 - u*v * (1 + 3*(u+v) + 4*u*v)^2.
a(n) ~ exp(2*Pi*sqrt(2*n/11)) / (2^(11/4) * 11^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2017
EXAMPLE
G.f. = q + 2*q^2 + 3*q^3 + 6*q^4 + 9*q^5 + 14*q^6 + 22*q^7 + 32*q^8 + 46*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q / (QPochhammer[ q, q^2] QPochhammer[ q^11, q^22])^2, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
a[ n_] := SeriesCoefficient[ q / (Product[ 1 - q^k, {k, 1, n, 2}] Product[ 1 - q^k, {k, 11, n, 22}])^2, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
nmax = 60; CoefficientList[Series[Product[((1+x^k)*(1+x^(11*k)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^22 + A) / (eta(x + A) * eta(x^11 + A)))^2, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 03 2006
STATUS
approved