login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128518
Expansion of q^(-1) * (chi(-q^13) / chi(-q))^2 in powers of q where chi() is a Ramanujan theta function.
2
1, 2, 3, 6, 9, 14, 22, 32, 46, 66, 93, 128, 176, 236, 315, 420, 550, 718, 932, 1198, 1534, 1956, 2476, 3120, 3919, 4896, 6095, 7562, 9341, 11504, 14126, 17284, 21090, 25666, 31140, 37692, 45515, 54818, 65878, 79000, 94523, 112872, 134522, 160004
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q^2) * eta(q^13) / (eta(q) * eta(q^26)))^2 in powers of q.
Euler transform of period 26 sequence [ 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u^2 - v) * (w^2 - v) - u*w * (4*(1+v^2) - 4*v).
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u*v - u - v)^3 - u*v * (u+v - 1) * (u^2 + v^2 + 1).
G.f. is a period 1 Fourier series which satisfies f(-1 / (26 t)) = f(t) where q = exp(2 Pi i t).
G.f.: (1/x)* (Product_{k>0} P(x^k))^-2 where P(x) is the 26th cyclotomic polynomial of degree 12.
a(n) = A058597(n) unless n = 0.
a(n) ~ exp(2*Pi*sqrt(2*n/13)) / (2^(3/4) * 13^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
EXAMPLE
G.f. = 1/q + 2 + 3*q + 6*q^2 + 9*q^3 + 14*q^4 + 22*q^5 + 32*q^6 + 46*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ q^2] QPochhammer[ q^13] / (QPochhammer[ q] QPochhammer[ q^26]))^2, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
nmax=60; CoefficientList[Series[Product[((1+x^k) / (1+x^(13*k)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 14 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^13 + A) / (eta(x + A) * eta(x^26 + A)))^2, n))};
(Magma) A := Basis( CuspForms( Gamma0(26), 2), 46); B<q> := A[1] / A[2]; B; /* Michael Somos, Nov 30 2014 */
CROSSREFS
Cf. A058597.
Sequence in context: A308251 A058609 A333697 * A022567 A134004 A123631
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 06 2007
STATUS
approved