login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128516
McKay-Thompson series of class 14C for the Monster group with a(0) = 4.
2
1, 4, 10, 24, 51, 100, 190, 340, 585, 984, 1606, 2564, 4022, 6188, 9382, 14044, 20746, 30308, 43836, 62784, 89153, 125588, 175542, 243656, 335988, 460388, 627178, 849676, 1145024, 1535416, 2049200, 2722544, 3601681, 4745208, 6227276, 8141656
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1) * (chi(-q^7) / chi(-q))^4 in powers of q where chi() is a Ramanujan theta function.
Expansion of (eta(q^2) * eta(q^7) / (eta(q) * eta(q^14)))^4 in powers of q.
Euler transform of period 14 sequence [ 4, 0, 4, 0, 4, 0, 0, 0, 4, 0, 4, 0, 4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (14 t)) = f(t) where q = exp(2 Pi i t).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u^2 - v) * (w^2 - v) - u*w * (8*(1 + v^2) - 16*v).
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u*v + 1) * (u + v) * (u - v)^2 - u*v * (u - 1) * (v - 1) * (u*v - 8*(u+v) + 1).
G.f.: (1/x) * (Product_{k>0} P(x^k))^-4 where P(x) = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 is the 14th cyclotomic polynomial.
a(n) = A058504(n) unless n = 0.
a(n) ~ exp(2*Pi*sqrt(2*n/7)) / (2^(3/4) * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
EXAMPLE
G.f. = 1/q + 4 + 10*q + 24*q^2 + 51*q^3 + 100*q^4 + 190*q^5 + 340*q^6 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ -q, q] / QPochhammer[ -q^7, q^7])^4, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ q^2] QPochhammer[ q^7] / (QPochhammer[ q] QPochhammer[ q^14]))^4, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
nmax=60; CoefficientList[Series[Product[((1+x^k) / (1+x^(7*k)))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 14 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^7 + A) / (eta(x + A) * eta(x^14 + A)))^4, n))};
CROSSREFS
Cf. A058504.
Sequence in context: A209970 A211392 A309777 * A022569 A093831 A274582
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 06 2007
STATUS
approved