OFFSET
0,4
COMMENTS
a(n) is also the number of 2-divided binary words of length n (see A210109 for definition, see A209919 for further details).
This is a special case of a more general result: Let A={0,1,...,s-1} be an alphabet of size s. Let A* = set of words over A. Let < denote lexicographic order on A*. Let f be the morphism on A* defined by i -> s-i for i in A.
Theorem: Let d(n) be the number of 2-divided words in A* of length n, and let b(n) be the number of rotationally inequivalent necklaces with n beads each in A. Then d(n)+b(n)=s^n.
Proof: Let w in A* have length n. If w is <= all of its cyclic shifts then w contributes to the b(n) count. Otherwise w = uv with vu < uv. But then f(w)=f(u)f(v) with f(u)f(v) < f(v)f(u) is 2-divided, and w contributes to the count in d(n). QED
CROSSREFS
KEYWORD
nonn
AUTHOR
David Applegate and N. J. A. Sloane, Mar 17 2012
STATUS
approved