login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211392
The number of divisors d of n! such that the symmetric group on n letters contains no elements of order d.
2
0, 0, 1, 4, 10, 24, 51, 85, 146, 254, 520, 769, 1557, 2561, 3997, 5333, 10705, 14633, 29315, 40970, 60722, 95912, 191902, 242769, 339909, 532088, 677224, 917112, 1834373, 2332596, 4665375, 5529352, 7864049, 12164824, 16422587, 19595164, 39190653, 60465758
OFFSET
1,4
LINKS
FORMULA
a(n) = A000005(n!) - A009490(n).
MAPLE
b:= proc(n, i) option remember; local p;
p:= `if`(i<1, 1, ithprime(i));
`if`(n=0 or i<1, 1, b(n, i-1)+
add(b(n-p^j, i-1), j=1..ilog[p](n)))
end:
a:= n-> numtheory[tau](n!) -b(n, numtheory[pi](n)):
seq(a(n), n=1..100); # Alois P. Heinz, Feb 15 2013
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n==0 || i<1, 1, b[n, i-1] + Sum[b[n-p^j, i-1], {j, 1, Floor@Log[p, n]}]]];
a[n_] := DivisorSigma[0, n!] - b[n, PrimePi[n]];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 24 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Gruber, Feb 07 2013
EXTENSIONS
More terms from Alois P. Heinz, Feb 11 2013
STATUS
approved