The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009490 Number of distinct orders of permutations of n objects; number of nonisomorphic cyclic subgroups of symmetric group S_n. 15
 1, 1, 2, 3, 4, 6, 6, 9, 11, 14, 16, 20, 23, 27, 31, 35, 43, 47, 55, 61, 70, 78, 88, 98, 111, 123, 136, 152, 168, 187, 204, 225, 248, 271, 296, 325, 356, 387, 418, 455, 495, 537, 581, 629, 678, 732, 787, 851, 918, 986, 1056, 1133, 1217, 1307, 1399, 1498, 1600, 1708, 1823 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also number of different LCM's of partitions of n. a(n) <= A023893(n), which counts the nonisomorphic Abelian subgroups of S_n. - M. F. Hasler, May 24 2013 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe) L. Elliott, A. Levine, and J. D. Mitchell, Counting monogenic monoids and inverse monoids, arXiv:2303.12387 [math.GR], 2023. Index entries for sequences related to lcm's FORMULA a(n) = Sum_{k=0..n} b(k), where b(k) is the number of partitions of k into distinct prime power parts (1 excluded) (A051613). - Vladeta Jovovic G.f.: Prod(p prime, 1 + Sum(k >= 1, x^(p^k))) / (1-x). - David W. Wilson, Apr 19, 2000 MAPLE b:= proc(n, i) option remember; local p; p:= `if`(i<1, 1, ithprime(i)); `if`(n=0 or i<1, 1, b(n, i-1)+ add(b(n-p^j, i-1), j=1..ilog[p](n))) end: a:= n-> b(n, numtheory[pi](n)): seq(a(n), n=0..100); # Alois P. Heinz, Feb 15 2013 MATHEMATICA Table[ Length[ Union[ Apply[ LCM, Partitions[ n ], 1 ] ] ], {n, 30} ] f[n_] := Length@ Union[LCM @@@ IntegerPartitions@ n]; Array[f, 60, 0] (* Caution, the following is Extremely Slow and Resource Intensive *) CoefficientList[ Series[ Expand[ Product[1 + Sum[x^(Prime@ i^k), {k, 4}], {i, 10}]/(1 - x)], {x, 0, 30}], x] b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0 || i<1, 1, b[n, i-1]+Sum[b[n-p^j, i-1], {j, 1, Log[p, n]}]]]; a[n_] := b[n, PrimePi[n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 03 2014, after Alois P. Heinz *) PROG (PARI) /* compute David W. Wilson's g.f., needs <1 sec for 1000 terms */ N=1000; x='x+O('x^N); /* N terms */ gf=1; /* generating function */ { forprime(p=2, N, sm = 1; pp=p; /* sum; prime power */ while ( pp

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 21:08 EST 2023. Contains 367565 sequences. (Running on oeis4.)