login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 14C for the Monster group with a(0) = 4.
2

%I #17 Mar 12 2021 22:24:44

%S 1,4,10,24,51,100,190,340,585,984,1606,2564,4022,6188,9382,14044,

%T 20746,30308,43836,62784,89153,125588,175542,243656,335988,460388,

%U 627178,849676,1145024,1535416,2049200,2722544,3601681,4745208,6227276,8141656

%N McKay-Thompson series of class 14C for the Monster group with a(0) = 4.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H Seiichi Manyama, <a href="/A128516/b128516.txt">Table of n, a(n) for n = -1..10000</a>

%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of q^(-1) * (chi(-q^7) / chi(-q))^4 in powers of q where chi() is a Ramanujan theta function.

%F Expansion of (eta(q^2) * eta(q^7) / (eta(q) * eta(q^14)))^4 in powers of q.

%F Euler transform of period 14 sequence [ 4, 0, 4, 0, 4, 0, 0, 0, 4, 0, 4, 0, 4, 0, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (14 t)) = f(t) where q = exp(2 Pi i t).

%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u^2 - v) * (w^2 - v) - u*w * (8*(1 + v^2) - 16*v).

%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u*v + 1) * (u + v) * (u - v)^2 - u*v * (u - 1) * (v - 1) * (u*v - 8*(u+v) + 1).

%F G.f.: (1/x) * (Product_{k>0} P(x^k))^-4 where P(x) = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 is the 14th cyclotomic polynomial.

%F a(n) = A058504(n) unless n = 0.

%F a(n) ~ exp(2*Pi*sqrt(2*n/7)) / (2^(3/4) * 7^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Oct 14 2015

%e G.f. = 1/q + 4 + 10*q + 24*q^2 + 51*q^3 + 100*q^4 + 190*q^5 + 340*q^6 + ...

%t a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ -q, q] / QPochhammer[ -q^7, q^7])^4, {q, 0, n}]; (* _Michael Somos_, Apr 26 2015 *)

%t a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ q^2] QPochhammer[ q^7] / (QPochhammer[ q] QPochhammer[ q^14]))^4, {q, 0, n}]; (* _Michael Somos_, Apr 26 2015 *)

%t nmax=60; CoefficientList[Series[Product[((1+x^k) / (1+x^(7*k)))^4,{k,1,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Oct 14 2015 *)

%o (PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^7 + A) / (eta(x + A) * eta(x^14 + A)))^4, n))};

%Y Cf. A058504.

%K nonn

%O -1,2

%A _Michael Somos_, Mar 06 2007