login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123627
Smallest prime q such that (q^p+1)/(q+1) is prime, where p = prime(n); or 0 if no such prime q exists.
8
0, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 19, 61, 2, 7, 839, 89, 2, 5, 409, 571, 2, 809, 227, 317, 2, 5, 79, 23, 4073, 2, 281, 89, 739, 1427, 727, 19, 19, 2, 281, 11, 2143, 2, 1013, 4259, 2, 661, 1879, 401, 5, 4099, 1579, 137, 43, 487, 307, 547, 1709, 43, 3, 463, 2161, 353, 443, 2
OFFSET
1,2
COMMENTS
a(1) = 0 because such a prime does not exist, Mod[n^2+1,n+1] = 2 for n>1.
Corresponding primes (q^p+1)/(q+1), where prime q = a(n) and p = Prime[n], are listed in A123628[n] = {1,3,11,43,683,2731,43691,174763,2796203,402488219476647465854701,715827883,...}.
a(n) coincides with A103795[n] when A103795[n] is prime.
a(n) = 2 for n = PrimePi[A000978[k]] = {2,3,4,5,6,7,8,9,11,14,18,22,26,31,39,43,46,65,69,126,267,380,495,762,1285,1304,1364,1479,1697,4469,8135,9193,11065,11902,12923,13103,23396,23642,31850,...}.
Corresponding primes of the form (2^p + 1)/3 are the Wagstaff primes that are listed in A000979[n] = {3,11,43,683,2731,43691,174763,2796203,715827883,...}.
LINKS
FORMULA
A123628(n) = (a(n)^prime(n) + 1) / (a(n) + 1).
MAPLE
f:= proc(n) local p, q;
p:= ithprime(n);
q:= 1;
do
q:= nextprime(q);
if isprime((q^p+1)/(q+1)) then return q fi
od
end proc:
f(1):= 0:
map(f, [$1..70]); # Robert Israel, Jul 31 2019
MATHEMATICA
a(1) = 0, for n>1 Do[p=Prime[k]; n=1; q=Prime[n]; cp=(q^p+1)/(q+1); While[ !PrimeQ[cp], n=n+1; q=Prime[n]; cp=(q^p+1)/(q+1)]; Print[q], {k, 2, 61}]
Do[p=Prime[k]; n=1; q=Prime[n]; cp=(q^p+1)/(q+1); While[ !PrimeQ[cp], n=n+1; q=Prime[n]; cp=(q^p+1)/(q+1)]; Print[{k, q}], {k, 1, 134}]
spq[n_]:=Module[{p=Prime[n], q=2}, While[!PrimeQ[(q^p+1)/(q+1)], q=NextPrime[ q]]; q]; Join[{0}, Array[spq, 70, 2]] (* Harvey P. Dale, Mar 23 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Oct 04 2006, Aug 05 2008
STATUS
approved