login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263529
Binomial transform of double factorial n!! (A006882).
3
1, 2, 5, 13, 37, 111, 355, 1191, 4201, 15445, 59171, 234983, 966397, 4101709, 17946783, 80754331, 373286481, 1769440513, 8592681907, 42689422871, 216789872741, 1124107246669, 5947013363479, 32071798826115, 176194545585529, 985330955637801, 5605802379087067
OFFSET
0,2
LINKS
Eric Weisstein's MathWorld, Double Factorial.
FORMULA
a(n) = Sum_{k=0..n} k!!*binomial(n,k), where k!! = A006882(k).
Sum_{k=0..n} (-1)^(k+n)*a(k)*binomial(n,k) = n!!.
E.g.f.: exp(x) + exp((2*x+x^2)/2)*(2 + sqrt(2*Pi)*erf(x/sqrt(2)))*x/2.
Recurrence: (n+1)*a(n+2) = (n+2)*a(n+1) + (n+1)*(n+2)*a(n) - 1.
a(n) ~ (sqrt(2) + sqrt(Pi))/2 * n^(n/2 + 1/2) * exp(sqrt(n) - n/2 - 1/4). - Vaclav Kotesovec, Oct 20 2015
0 = a(n)*(+a(n+1) - 2*a(n+2) - 2*a(n+3) + a(n+4)) + a(n+1)*(+3*a(n+2) + a(n+3) - a(n+4)) + a(n+2)*(-2*a(n+2) + a(n+3)) for all n>=0. - Michael Somos, Oct 20 2015
G.f.: Sum_{k>=0} k!!*x^k/(1 - x)^(k+1). - Ilya Gutkovskiy, Apr 12 2019
EXAMPLE
G.f. = 1 + 2*x + 5*x^2 + 13*x^3 + 37*x^4 + 111*x^5 + 355*x^6 + 1191*x^7 + ...
MATHEMATICA
Table[Sum[k!!*Binomial[n, k], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 20 2015 *)
PROG
(PARI) vector(50, n, n--; sum(k=0, n, prod(i=0, (k-1)\2, k - 2*i)*binomial(n, k))) \\ Altug Alkan, Oct 20 2015
CROSSREFS
Sequence in context: A003080 A149854 A151442 * A053732 A216617 A243412
KEYWORD
nonn
AUTHOR
STATUS
approved