OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..795
Eric Weisstein's MathWorld, Double Factorial.
FORMULA
a(n) = Sum_{k=0..n} k!!*binomial(n,k), where k!! = A006882(k).
Sum_{k=0..n} (-1)^(k+n)*a(k)*binomial(n,k) = n!!.
E.g.f.: exp(x) + exp((2*x+x^2)/2)*(2 + sqrt(2*Pi)*erf(x/sqrt(2)))*x/2.
Recurrence: (n+1)*a(n+2) = (n+2)*a(n+1) + (n+1)*(n+2)*a(n) - 1.
a(n) ~ (sqrt(2) + sqrt(Pi))/2 * n^(n/2 + 1/2) * exp(sqrt(n) - n/2 - 1/4). - Vaclav Kotesovec, Oct 20 2015
0 = a(n)*(+a(n+1) - 2*a(n+2) - 2*a(n+3) + a(n+4)) + a(n+1)*(+3*a(n+2) + a(n+3) - a(n+4)) + a(n+2)*(-2*a(n+2) + a(n+3)) for all n>=0. - Michael Somos, Oct 20 2015
G.f.: Sum_{k>=0} k!!*x^k/(1 - x)^(k+1). - Ilya Gutkovskiy, Apr 12 2019
EXAMPLE
G.f. = 1 + 2*x + 5*x^2 + 13*x^3 + 37*x^4 + 111*x^5 + 355*x^6 + 1191*x^7 + ...
MATHEMATICA
Table[Sum[k!!*Binomial[n, k], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 20 2015 *)
PROG
(PARI) vector(50, n, n--; sum(k=0, n, prod(i=0, (k-1)\2, k - 2*i)*binomial(n, k))) \\ Altug Alkan, Oct 20 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Reshetnikov, Oct 19 2015
STATUS
approved