login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263532
G.f. A(x) satisfies: A(x) = x + B(A(x))^2 such that B(x) = x + A(B(x))^3, where B(x) is the g.f. of A263533.
2
1, 1, 2, 7, 32, 165, 920, 5451, 33932, 220127, 1479568, 10259394, 73148986, 534912298, 4003678718, 30621175937, 238991734932, 1901317053794, 15403799348464, 126986224205129, 1064498810334784, 9068572636018981, 78472353869487618, 689421099954372488, 6147113115698137860
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) and B(x) also satisfy:
(1) A( x - B(x)^2 ) = x.
(2) B( x - A(x)^3 ) = x.
(3) A( x - x^2 - A(x)^3 ) = x - A(x)^3.
(4) B( x - x^3 - B(x)^2 ) = x - B(x)^2.
(5) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) B(x)^(2*n)/n!.
(6) B(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(3*n)/n!.
(7) A(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) B(x)^(2*n)/(n!*x) ).
(8) B(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(3*n)/(n!*x) ).
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 7*x^4 + 32*x^5 + 165*x^6 + 920*x^7 + 5451*x^8 + 33932*x^9 + 220127*x^10 + 1479568*x^11 + 10259394*x^12 +...
such that A(x) = x + B(A(x))^2 and B(x) = x + A(B(x))^3 where
B(x) = x + x^3 + 3*x^4 + 12*x^5 + 55*x^6 + 276*x^7 + 1488*x^8 + 8499*x^9 + 50925*x^10 + 317841*x^11 + 2055474*x^12 +...
Also
A(x) = x + B(x)^2 + d/dx B(x)^4/2! + d^2/dx^2 B(x)^6/3! + d^3/dx^3 B(x)^8/4! +...
B(x) = x + A(x)^3 + d/dx A(x)^6/2! + d^2/dx^2 A(x)^9/3! + d^3/dx^3 A(x)^12/4! +...
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 34*x^6 + 156*x^7 + 804*x^8 + 4469*x^9 + 26307*x^10 + 162306*x^11 + 1042111*x^12 +...
B(x)^2 = x^2 + 2*x^4 + 6*x^5 + 25*x^6 + 116*x^7 + 585*x^8 + 3158*x^9 + 18024*x^10 + 107802*x^11 + 671257*x^12 +...
Also
A(B(x)) = x + x^2 + 3*x^3 + 12*x^4 + 56*x^5 + 291*x^6 + 1634*x^7 + 9738*x^8 + 60887*x^9 + 396259*x^10 + 2669199*x^11 + 18531931*x^12 +...
where A(B( x - x^3 - B(x)^2 )) = x.
And
B(A(x)) = x + x^2 + 3*x^3 + 13*x^4 + 65*x^5 + 356*x^6 + 2090*x^7 + 12963*x^8 + 84090*x^9 + 566495*x^10 + 3943195*x^11 + 28252008*x^12 +...
where B(A( x - x^2 - A(x)^3 )) = x.
PROG
(PARI) {a(n) = my(A=x, B=x); for(i=1, n, A = x + subst(B^2, x, A +x*O(x^n)); B = x + subst(A^3, x, B); ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=x, B=x); for(i=1, n, A = serreverse(x - B^2 +x*O(x^n)); B = serreverse(x - A^3); ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A263533.
Sequence in context: A268297 A368962 A363562 * A108524 A366400 A226269
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 03 2015
STATUS
approved