login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263535
a(1) = 1; thereafter a(n) = a(n-1) + d_1^1 + d_2^2 + d_3^3 + ..., where d_1 d_2 d_3 ... is the decimal expansion of a(n-1).
1
1, 2, 4, 8, 16, 53, 67, 122, 135, 270, 321, 329, 1065, 1907, 4390, 5132, 5181, 5700, 5754, 6189, 13269, 73632, 73977, 93930, 94758, 128519, 661103, 661876, 729478, 1009425, 1095200, 1096587, 2187425, 2269554, 2311471, 2430158, 4542981, 4864284, 5143384, 5422306
OFFSET
1,2
COMMENTS
This additive sequence will tend to be geometric.
LINKS
EXAMPLE
a(5)=16, so a(6) is 16 + 1^1 + 6^2 = 53.
MATHEMATICA
NestList[#+Total[IntegerDigits[#]^Range[IntegerLength[#]]]&, 1, 40] (* Harvey P. Dale, Jan 19 2021 *)
PROG
(Python)
def moda(n):
return sum(int(d)**(i + 1) for i, d in enumerate(str(n)))
b = 1
resu = [1]
for a in range(1, 100):
b += moda(b)
resu.append(b)
resu
(Sage) A=[1]
for i in [1..2000]:
A.append(A[i-1]+sum(A[i-1].digits()[len(A[i-1].digits())-1-j]^(j+1) for j in [0..len(A[i-1].digits())-1]))
A # Tom Edgar, Oct 20 2015
(PARI) lista(nn) = {print1(a=1, ", "); for (n=2, nn, d = digits(a); na = a + sum(i=1, #d, d[i]^i); print1(na, ", "); a = na; ); } \\ Michel Marcus, Nov 20 2015
CROSSREFS
Sequence in context: A264635 A046237 A013084 * A018681 A367172 A018735
KEYWORD
nonn,base
AUTHOR
Pieter Post, Oct 20 2015
STATUS
approved