

A263536


Row sum of an equilateral triangle tiled with the 3,4,5 Pythagorean triple.


2



5, 7, 12, 17, 19, 24, 29, 31, 36, 41, 43, 48, 53, 55, 60, 65, 67, 72, 77, 79, 84, 89, 91, 96, 101, 103, 108, 113, 115, 120, 125, 127, 132, 137, 139, 144, 149, 151, 156, 161, 163, 168, 173, 175, 180, 185, 187, 192, 197, 199, 204, 209, 211, 216, 221, 223, 228
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Maximum number of Pythagorean triples in an equilateral triangle.
Two rules are used to construct this equilateral triangle: #1. Start with the number 5 at the top. #2. Require every "triple" to contain the Pythagorean triple 3, 4, 5 (see link below).
Up and down Pythagorean triples consist of two terms below and one above when k is odd (an up triple), and two terms above and one below when k is even (a down triple). Three adjacent terms in a straight line within the triangle form a linear triple.


LINKS

Colin Barker, Table of n, a(n) for n = 1..1000
Craig Knecht, Equilateral triangle tiled with 3,4,5 Pythagorean triples.
Craig Knecht, Interlocked up/down Pythagorean pairs.
Craig Knecht, Linear and triangular triples.
Craig Knecht, Incarcerated numbers.
Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).


FORMULA

From Colin Barker, Oct 26 2015: (Start)
a(n) = a(n1)+a(n3)a(n4) for n>4.
G.f.: x*(5*x^2+2*x+5) / ((x1)^2*(x^2+x+1)).
(End)


EXAMPLE

Triangle (T(n,k): Row sum
5; 5
3, 4; 7
4, 5, 3; 12
5, 3, 4, 5; 17
3, 4, 5, 3, 4; 19
4, 5, 3, 4, 5, 3; 24


PROG

(PARI) Vec(x*(5*x^2+2*x+5)/((x1)^2*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Oct 26 2015


CROSSREFS

Cf. A136289 (every triple contains 1,2,3), A008854 (every triple contains 1,2,2), A259052 (sum of Pascal triples).
Sequence in context: A314309 A314310 A117140 * A314311 A031144 A314312
Adjacent sequences: A263533 A263534 A263535 * A263537 A263538 A263539


KEYWORD

nonn,easy


AUTHOR

Craig Knecht, Oct 20 2015


STATUS

approved



