login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263538
Expansion of 3 * a(q^2) * b(q^2) * c(q^2) / (b(q) * c(q)^2) in powers of q where a(), b(), c() are cubic AGM theta functions.
2
1, 1, 6, 12, 5, 36, 60, 24, 150, 228, 86, 504, 732, 262, 1488, 2088, 725, 3996, 5460, 1852, 9972, 13344, 4436, 23472, 30876, 10103, 52644, 68268, 22040, 113364, 145224, 46336, 235734, 298800, 94378, 475488, 597108, 186926, 933672, 1162824, 361126, 1790028
OFFSET
0,3
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
FORMULA
a(n) = A262930(2*n).
EXAMPLE
G.f. = 1 + x + 6*x^2 + 12*x^3 + 5*x^4 + 36*x^5 + 60*x^6 + 24*x^7 + 150*x^8 + ...
MATHEMATICA
a:= With[{nmax = 50}, CoefficientList[Series[(QPochhammer[x^2]^3 + 9*x^2*QPochhammer[x^18]^3)*QPochhammer[x^2]^2*QPochhammer[x^6]/ (QPochhammer[x]*QPochhammer[x^3]^5), {x, 0, nmax}], x]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 31 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 + 9 * x^2 * eta(x^18 + A)^3) * eta(x^2 + A)^2 * eta(x^6 + A) / (eta(x + A) * eta(x^3 + A)^5), n))};
CROSSREFS
Cf. A262930.
Sequence in context: A066401 A335413 A356119 * A076590 A113660 A122859
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 20 2015
STATUS
approved