login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 3 * a(q^2) * b(q^2) * c(q^2) / (b(q) * c(q)^2) in powers of q where a(), b(), c() are cubic AGM theta functions.
2

%I #7 Jul 31 2018 21:16:37

%S 1,1,6,12,5,36,60,24,150,228,86,504,732,262,1488,2088,725,3996,5460,

%T 1852,9972,13344,4436,23472,30876,10103,52644,68268,22040,113364,

%U 145224,46336,235734,298800,94378,475488,597108,186926,933672,1162824,361126,1790028

%N Expansion of 3 * a(q^2) * b(q^2) * c(q^2) / (b(q) * c(q)^2) in powers of q where a(), b(), c() are cubic AGM theta functions.

%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

%H G. C. Greubel, <a href="/A263538/b263538.txt">Table of n, a(n) for n = 0..2500</a>

%F a(n) = A262930(2*n).

%e G.f. = 1 + x + 6*x^2 + 12*x^3 + 5*x^4 + 36*x^5 + 60*x^6 + 24*x^7 + 150*x^8 + ...

%t a:= With[{nmax = 50}, CoefficientList[Series[(QPochhammer[x^2]^3 + 9*x^2*QPochhammer[x^18]^3)*QPochhammer[x^2]^2*QPochhammer[x^6]/ (QPochhammer[x]*QPochhammer[x^3]^5), {x, 0, nmax}], x]]; Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_, Jul 31 2018 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 + 9 * x^2 * eta(x^18 + A)^3) * eta(x^2 + A)^2 * eta(x^6 + A) / (eta(x + A) * eta(x^3 + A)^5), n))};

%Y Cf. A262930.

%K nonn

%O 0,3

%A _Michael Somos_, Oct 20 2015