login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sum of an equilateral triangle tiled with the 3,4,5 Pythagorean triple.
2

%I #42 Jan 21 2021 04:21:30

%S 5,7,12,17,19,24,29,31,36,41,43,48,53,55,60,65,67,72,77,79,84,89,91,

%T 96,101,103,108,113,115,120,125,127,132,137,139,144,149,151,156,161,

%U 163,168,173,175,180,185,187,192,197,199,204,209,211,216,221,223,228

%N Row sum of an equilateral triangle tiled with the 3,4,5 Pythagorean triple.

%C Maximum number of Pythagorean triples in an equilateral triangle.

%C Two rules are used to construct this equilateral triangle: #1. Start with the number 5 at the top. #2. Require every "triple" to contain the Pythagorean triple 3, 4, 5 (see link below).

%C Up and down Pythagorean triples consist of two terms below and one above when k is odd (an up triple), and two terms above and one below when k is even (a down triple). Three adjacent terms in a straight line within the triangle form a linear triple.

%H Colin Barker, <a href="/A263536/b263536.txt">Table of n, a(n) for n = 1..1000</a>

%H Craig Knecht, <a href="/A263536/a263536.jpg">Equilateral triangle tiled with 3,4,5 Pythagorean triples</a>.

%H Craig Knecht, <a href="/A263536/a263536_1.jpg">Interlocked up/down Pythagorean pairs</a>.

%H Craig Knecht, <a href="/A263536/a263536_2.jpg">Linear and triangular triples</a>.

%H Craig Knecht, <a href="/A263536/a263536_4.jpg">Incarcerated numbers</a>.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).

%F From _Colin Barker_, Oct 26 2015: (Start)

%F a(n) = a(n-1)+a(n-3)-a(n-4) for n>4.

%F G.f.: x*(5*x^2+2*x+5) / ((x-1)^2*(x^2+x+1)).

%F (End)

%e Triangle (T(n,k): Row sum

%e 5; 5

%e 3, 4; 7

%e 4, 5, 3; 12

%e 5, 3, 4, 5; 17

%e 3, 4, 5, 3, 4; 19

%e 4, 5, 3, 4, 5, 3; 24

%o (PARI) Vec(x*(5*x^2+2*x+5)/((x-1)^2*(x^2+x+1)) + O(x^100)) \\ _Colin Barker_, Oct 26 2015

%Y Cf. A136289 (every triple contains 1,2,3), A008854 (every triple contains 1,2,2), A259052 (sum of Pascal triples).

%K nonn,easy

%O 1,1

%A _Craig Knecht_, Oct 20 2015