login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263534
Consider the 10's complements mod 10 of the digits of a number k. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to k.
9
29, 76, 157, 174, 191, 475, 713, 1129, 1961, 3286, 4424, 7812, 8973, 19978, 24317, 35845, 37041, 51712, 68022, 166838, 443275, 444247, 445219, 509439, 706317, 1189312, 1933197, 2686010, 10809303, 55558901, 58338037, 257990335, 504050156, 839186880
OFFSET
1,1
COMMENTS
Like Keith numbers but using the ten's complements of their digits.
a(35) > 10^9. - Robert Price, Apr 08 2019
EXAMPLE
For 29, the 10's complements of its digits are 8, 1. Then:
8 + 1 = 9;
1 + 9 = 10;
9 + 10 = 19;
10 + 19 = 29.
For 475, the 10's complements of its digits are 6, 3, 5. Then:
6 + 3 + 5 = 14;
3 + 5 + 14 = 22;
5 + 14 + 22 = 41;
14 + 22 + 41 = 77;
22 + 41 + 77 = 140;
41 + 77 + 140 = 258;
77 + 140 + 258 = 475.
MAPLE
with(numtheory): P:=proc(q, h) local a, b, c, k, n, t, v; v:=array(1..h);
for n from 10 to q do b:=ilog10(n)+1; c:=n; a:=[];
for k from 1 to b do a:=[(10-c) mod 10, op(a)]; c:=trunc(c/10); od;
for k from 1 to b do v[k]:=a[k]; od; t:=b+1; v[t]:=add(v[k], k=1..b);
while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); od;
if v[t]=n then print(n); fi; od; end: P(10^9, 1000);
MATHEMATICA
Select[Range[10^5], Function[{m, n}, Last@ NestWhile[Append[#, Total@ Take[#, -m]] &, Flatten[{#, Total@ #}] &[IntegerDigits[n] /. d_?Positive :> 10 - d], Last@ # < n &, 1, 10^2] == n] @@ {IntegerLength@#, #} &] (* Michael De Vlieger, Mar 09 2018 *)
CROSSREFS
Cf. A007629.
Sequence in context: A142305 A184072 A071110 * A273360 A176185 A044167
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Oct 20 2015
EXTENSIONS
Name clarified, some terms and Maple code corrected by Paolo P. Lava, Mar 08 2018
a(30)-a(32) from Robert Price, Apr 05 2019
a(33)-a(34) from Robert Price, Apr 08 2019
STATUS
approved