login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176185
Numbers n with property that concatenation (2*n+1)//n is a square.
0
29, 76, 2289, 3796, 6369, 8756, 16736, 19696, 24900, 28484, 77529, 83761, 94169, 222889, 887556, 22228889, 88875556, 112594641, 368762025, 651177616
OFFSET
1,1
COMMENTS
If n d-digit number, (2*n+1) * 10^d + n = n * (2 * 10^d + 1) + 10^d = N^2
Sequence is infinite, two infinite "families" of such numbers n are:
(a) n = 8_(k)75_(k)6, 2 * n + 1 = 17_(k)51_(k)3, N = 2 * 6_(k+1)16_(k-1)7,
(b) n = 2_(k+1)8_(k)9, 2 * n + 1 = 4_(k)57_(k)9, N = 6_(k)76_(k)7, (k = 1, 2, ...)
List of (2*n+1)//n = N^2:
59//29 = 7^2 x 11^2, 153//76 = 2^4 x 31^2, 4579//2289 = 67^2 x 101^2,
7593//3796 = 2^2 x 4357^2, 12739//6369 = 11287^2, 17513//8756 = 2^2 x 13^2 x 509^2,
33473//16736 = 2^18 x 113^2, 39393//19696 = 2^4 x 13^2 x 17^2 x 71^2, 49801//24900,
56969//28484 = 2^2 x 13^2 x 2903^2, 155059//77529 = 7^2 x 17789^2, 167523//83761 = 347^2 x 373^2,
188339//94169 = 19^2 x 31^2 x 233^2, 445779//222889 = 7^2 x 11^2 x 13^2 x 23^2 x 29^2,
1775113//887556 = 2^2 x 666167^2, 44457779//22228889 = 59^2 x 73^2 x 113^2 x 137^2,
177751113//88875556 = 2^2 x 66661667 ^ 2, 225189283//112594641 = 23^2 x 83^2 x 331^2 x 751^2,
737524051//368762025 = 5^2 x 2161^2 x 79481^2, 1302355233//651177616 = 2^4 x 285301949^2
REFERENCES
J. Buchmann, U. Vollmer: Binary Quadratic Forms, Springer, Berlin, 2007
L. E. Dickson: History of the Theory of numbers, vol. 2: Diophantine Analysis, Dover Publications, 2005
EXAMPLE
n = 29 = prime(10) is 1st term: 2 * n + 1 = 59 = prime(17), 5929 = 77^2, 59//29 a concatenation of two primes
n = 6369 (composite) is 4th term: 2 * n + 1 = 12739 = prime(1520), N = 11287 = prime(1365), only prime base of above terms
MATHEMATICA
Select[Range[6512*10^5], IntegerQ[Sqrt[(2 #+1)10^IntegerLength[#]+#]]&] (* Harvey P. Dale, Mar 05 2022 *)
CROSSREFS
KEYWORD
base,nonn,uned
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 11 2010
STATUS
approved