login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263531
G.f. A(x) satisfies: A(x) = B(x)^2 - C(x)^2 such that B(x) + I*C(x) = Series_Reversion(x - I*A(x)), where I^2 = -1.
3
1, -5, 112, -4320, 227766, -14942616, 1162657840, -104338906529, 10609887976616, -1207797487940348, 152572977202977992, -21242819435887437760, 3241842130718219392320, -539712032454499745200600, 97612800729251959183577168, -19106581507633892101354812324, 4033513580481891302243479168168, -915408408852469072798058443048672
OFFSET
1,2
LINKS
FORMULA
Let G(x) be the g.f. of A227852, where G( x - (G(x)^2 + G(-x)^2)/2 ) = x, and B(x) + I*C(x) = Series_Reversion(x - I*A(x)), then
(1) (G(x)^2 + G(-x)^2)/2 = -A(I*x).
(2) G(x + A(I*x)) = x.
(3) G(x) = x - A( I*G(x) ).
(4) G(x) = -I*B(I*x) - C(I*x), where A(x) = B(x)^2 - C(x)^2.
(5) B(x) + I*C(x) = x - Sum_{n>=1} d^(n-1)/dx^(n-1) I^n * A(x)^n/n!, where A(x) = B(x)^2 - C(x)^2.
EXAMPLE
G.f.: A(x) = x^2 - 5*x^4 + 112*x^6 - 4320*x^8 + 227766*x^10 - 14942616*x^12 + 1162657840*x^14 - 104338906529*x^16 +...
such that A(x) = B(x)^2 - C(x)^2 and B(x) and C(x) are defined by
Series_Reversion(x - I*A(x)) = B(x) + I*C(x), where
B(x) = x - 2*x^3 + 44*x^5 - 1728*x^7 + 93130*x^9 - 6235288*x^11 + 493813936*x^13 - 44989814920*x^15 + 4633862094852*x^17 +...+ (-1)^(n-1)*A227852(2*n-1)*x^(2*n-1) +...
C(x) = x^2 - 10*x^4 + 294*x^6 - 13389*x^8 + 796620*x^10 - 57551130*x^12 + 4857378920*x^14 - 468103507718*x^16 +...+ (-1)^(n-1)*A227852(2*n)*x^(2*n)
and
B(x)^2 = x^2 - 4*x^4 + 92*x^6 - 3632*x^8 + 195108*x^10 - 12995160*x^12 + 1023750448*x^14 - 92825448208*x^16 + 9521361427980*x^18 +...
C(x)^2 = x^4 - 20*x^6 + 688*x^8 - 32658*x^10 + 1947456*x^12 - 138907392*x^14 + 11513458321*x^16 - 1088526548636*x^18 +...
Further
G(x) = -I*B(I*x) - C(I*x) = x + x^2 + 2*x^3 + 10*x^4 + 44*x^5 + 294*x^6 + 1728*x^7 + 13389*x^8 + 93130*x^9 + 796620*x^10 +...+ A227852(n)*x^n +...
where G( x - (G(x)^2 + G(-x)^2)/2 ) = x.
PROG
(PARI) {a(n) = my(A=x^2, D); for(i=0, 2*n, D=serreverse(x - I*A +O(x^(2*n+1))); A = real(D)^2 - imag(D)^2 ); polcoeff(A, 2*n)}
for(n=1, 20, print1(a(n), ", "))
(PARI) /* Differential Series */
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A = x^2 +O(x^(2*n+2))); for(i=1, 2*n, D = x + sum(m=1, 2*n, I^m*Dx(m-1, A^m/m!) +O(x^(2*n+2))); A = real(D)^2 - imag(D)^2 ); polcoeff(A, 2*n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A002400 A268404 A258795 * A351148 A258177 A224897
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 20 2015
STATUS
approved