login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008854 Numbers that are congruent to {0, 1, 4} mod 5. 31
0, 1, 4, 5, 6, 9, 10, 11, 14, 15, 16, 19, 20, 21, 24, 25, 26, 29, 30, 31, 34, 35, 36, 39, 40, 41, 44, 45, 46, 49, 50, 51, 54, 55, 56, 59, 60, 61, 64, 65, 66, 69, 70, 71, 74, 75, 76, 79, 80, 81, 84, 85, 86, 89, 90, 91, 94, 95, 96, 99, 100, 101, 104, 105, 106, 109 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
n^3 and n have the same last digit.
Partial sums of (0, 1, 3, 1, 1, 3, 1, 1, 3, 1, ...). - Gary W. Adamson, Jun 19 2008
Row sum of a triangle where every "triple" contains 1,2,2. - Craig Knecht, Jul 30 2015
Nonnegative m such that floor(k*m^2/5) = k*floor(m^2/5), where k = 2, 3 or 4. - Bruno Berselli, Dec 03 2015
REFERENCES
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 459.
LINKS
FORMULA
a(n) = -1 + Sum_{k=1..n} (-(k mod 3)+5*((k+1) mod 3)+11*((k+2) mod 3))/9. - Paolo P. Lava, Sep 03 2010
G.f.: x^2*(1+3*x+x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = A047217(n+1)-1. - R. J. Mathar, Aug 04 2015
E.g.f: (5/3)*(x-1)*exp(x) + (2/3)*exp(-x/2)*cos(sqrt(3)*x/2) + (2/9)*exp(-x/2)*sin(sqrt(3)*x/2) + 1. - Robert Israel, Aug 04 2015
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (15*n-15+6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 5k-1, a(3k-1) = 5k-4, a(3k-2) = 5k-5. (End)
a(n) = 5*n/3 - 2*(n mod 3)/3 - 1. - Ammar Khatab, Aug 26 2020
Sum_{n>=2} (-1)^n/a(n) = 3*log(2)/5 - arccoth(3/sqrt(5))/sqrt(5). - Amiram Eldar, Dec 10 2021
From Peter Bala, Aug 04 2022: (Start)
a(n) = a(floor(n/2)) + a(1 + ceiling(n/2)) for n >= 4 with a(1) = 0, a(2) = 1 and a(3) = 4.
a(2*n) = a(n) + a(n+1); a(2*n+1) = a(n) + a(n+2). Cf. A047222 and A042965. (End)
MAPLE
for n to 1000 do if n^3 - n mod 10 = 0 then print(n); fi; od;
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 1, 4}, Mod[#, 5]] &] (* or *) LinearRecurrence[{1, 0, 1, -1}, {0, 1, 4, 5}, 91] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
CoefficientList[Series[x (1 + 3 x + x^2) / ((1 + x + x^2) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
PROG
(PARI) concat(0, Vec(x^2*(1+3*x+x^2)/((1+x+x^2)*(x-1)^2) + O(x^100))) \\ Altug Alkan, Dec 03 2015
(PARI) a(n) = vecsum(divrem(5*n-7, 3)); \\ Kevin Ryde, Aug 08 2022
(Magma) [n : n in [0..150] | n mod 5 in [0, 1, 4]]; // Wesley Ivan Hurt, Jun 14 2016
(Python)
def a(n): return sum(divmod(5*n-7, 3))
print([a(n) for n in range(1, 67)]) # Michael S. Branicky, Aug 08 2022 after Kevin Ryde
CROSSREFS
Sequence in context: A064931 A177103 A114454 * A062726 A159629 A328173
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 12:42 EDT 2023. Contains 365579 sequences. (Running on oeis4.)