login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047222 Numbers that are congruent to {0, 2, 3} mod 5. 26
0, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 20, 22, 23, 25, 27, 28, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 62, 63, 65, 67, 68, 70, 72, 73, 75, 77, 78, 80, 82, 83, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 102, 103, 105, 107 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Row sum of a triangle where the top value is 2 and every elementary triangle or triple is required to have the values 1,2,2 (see link below). Compare with A008854 where the triple contains 1,2,2 with 1 at the top. - Craig Knecht, Oct 18 2015

Also, numbers n such that n*(n^2+1)/5 is a nonnegative integer. [Bruno Berselli, Jan 16 2016]

Conjecture: Apart from 0, the sequence gives the values for c/6, such that an infinite number of primes, p, result in both p^2-c and p^2+c being positive primes, except when c is a square. When c is square solutions exist for c (both within and outside of the a(n) set), but occur at only a single prime p. See A274609. Other c values with only one prime providing a solution occur when p^2-c=3. See A274610. The only remaining c values with single p solutions are: c=2 (with p=3) and c=6 (with p=5). - Richard R. Forberg, Jun 26 2016

See A047363 for case of p^3 +- c. See A005097 and A177735 for observations on the general case p^q +- c. - Richard R. Forberg, Aug 11 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Craig Knecht, Row sum for the 1,2,2 triangle with 2 at the top.

Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).

FORMULA

From R. J. Mathar, Oct 18 2008: (Start)

G.f.: x^2*(2 + x + 2*x^2)/((1 - x)^2*(1 + x + x^2)).

a(n) = A028738(n-2), 1 < n < 16. (End)

a(n) = floor((5*n-4)/3). - Gary Detlefs, Oct 28 2011

a(n) = 2*n - 2 - floor(n/3). - Wesley Ivan Hurt, Nov 07 2013

From Wesley Ivan Hurt, Jun 14 2016: (Start)

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.

a(n) = (15*n-15-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.

a(3k) = 5k-2, a(3k-1) = 5k-3, a(3k-2) = 5k-5. (End)

a(n) = n - 1 + floor((2n-1)/3). - Wesley Ivan Hurt, Dec 27 2016

MAPLE

A047222:=n->2*n-2-floor(n/3); seq(A047222(k), k=1..100); # Wesley Ivan Hurt, Nov 07 2013

MATHEMATICA

Floor[(Range[5, 305, 5] - 4)/3] (* Vladimir Joseph Stephan Orlovsky, Jan 26 2012 *)

Flatten[Table[5n + {0, 2, 3}, {n, 0, 19}]] (* Alonso del Arte, Nov 07 2013 *)

LinearRecurrence[{1, 0, 1, -1}, {0, 2, 3, 5}, 100] (* Vincenzo Librandi, Jun 15 2016 *)

PROG

(PARI) a(n)=(5*n-4)\3 \\ Charles R Greathouse IV, Oct 28 2011

(PARI) concat(0, Vec(x^2*(2+x+2*x^2)/((1-x)^2*(1+x+x^2)) + O(x^100))) \\ Altug Alkan, Oct 26 2015

(MAGMA) [n : n in [0..150] | n mod 5 in [0, 2, 3]]; // Wesley Ivan Hurt, Jun 14 2016

CROSSREFS

Cf. A008854, A028738, A047363, A005097.

Sequence in context: A062132 A003258 A028738 * A028763 A285977 A186344

Adjacent sequences:  A047219 A047220 A047221 * A047223 A047224 A047225

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 8 03:01 EDT 2020. Contains 333312 sequences. (Running on oeis4.)