login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274609
Primes p such that both 2p-1 and 2p^2-2p+1 are prime.
2
2, 3, 31, 331, 1171, 2011, 2281, 3181, 4621, 4861, 6151, 6211, 6961, 7951, 8521, 9151, 11251, 12211, 13411, 15661, 17491, 18121, 19141, 20641, 22531, 23071, 23581, 24631, 25411, 26041, 26161, 26431, 26641, 27091, 27271, 27361, 27691, 28201, 28621, 29221, 31891, 33151, 34261, 35491, 36451
OFFSET
1,1
COMMENTS
All values of a(n), except {2,3}, are equal to 1 mod 30.
These are also primes p such that both p^2+c and p^2-c are positive primes, for some c, when c is a square, since that requires c = (p-1)^2. Corresponding c values begin {1, 4, 900, 108900, ...}. This relates to a comment at A047222.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
31^2 - 30^2 = 61 and 31^2 + 30^2 = 1861 are both prime.
MATHEMATICA
result = {}; Do[If[PrimeQ[2*Prime[i] - 1] && PrimeQ[2*Prime[i]^2 - 2*Prime[i] + 1], AppendTo[result, Prime[i]]], {i, 1, 10000}]; result
Select[Prime[Range[4000]], AllTrue[{2#-1, 2#^2-2#+1}, PrimeQ]&] (* Harvey P. Dale, Dec 26 2022 *)
PROG
(PARI) is(n)=isprime(2*n-1) && isprime(2*n^2-2*n+1) && isprime(n) \\ Charles R Greathouse IV, Jul 15 2016
CROSSREFS
Cf. A047222.
Sequence in context: A378868 A054551 A049065 * A372142 A128030 A239593
KEYWORD
nonn
AUTHOR
Richard R. Forberg, Jun 30 2016
STATUS
approved