login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274612 Numbers not divisible by 10 with at least one zero but no two adjacent 0's among its decimal digits. 1
101, 102, 103, 104, 105, 106, 107, 108, 109, 201, 202, 203, 204, 205, 206, 207, 208, 209, 301, 302, 303, 304, 305, 306, 307, 308, 309, 401, 402, 403, 404, 405, 406, 407, 408, 409, 501, 502, 503, 504, 505, 506, 507, 508, 509, 601, 602, 603, 604, 605, 606, 607, 608, 609, 701, 702, 703, 704, 705, 706, 707, 708, 709, 801, 802, 803, 804, 805, 806, 807, 808, 809, 901, 902, 903, 904, 905, 906, 907, 908, 909, 1011 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

EXAMPLE

101 is a term because 101 = 101  + (1^0 * 0^1);

1010 is a term because 1010 = 1010 + (1^0 * 0^1 * 1^0 ).

MAPLE

filter:= proc(n) local L;

  L:= [ListTools:-SearchAll(0, convert(n, base, 10))];

  nops(L) >= 1 and L[1]<>1 and not has(L[2..-1]-L[1..-2], 1)

end proc:

select(filter, [$1..10000]); # Robert Israel, Jul 24 2016

MATHEMATICA

AA = Table[(Product[(Mod[(Floor[f/10^n]), 10])^(Mod[(Floor[f/10^(n - 1)]), 10]), {n, 1, Floor[Log[10, f]]}]), {f, 1, 1200}]

BB = Table[n, {n, 1, 1200}]

Position[(AA + BB) - BB, 0]

PROG

(PARI) is(n)=n%10 && vecmin(digits(n))==0 && vecmin(digits(n, 100)) && vecmin(digits(n\10, 100)) \\ Charles R Greathouse IV, Jul 18 2016

CROSSREFS

Cf. A134808, A005188.

Sequence in context: A296883 A183086 A134808 * A261448 A213312 A261021

Adjacent sequences:  A274609 A274610 A274611 * A274613 A274614 A274615

KEYWORD

base,easy,nonn,less

AUTHOR

José de Jesús Camacho Medina, Jun 30 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 19:06 EDT 2021. Contains 347489 sequences. (Running on oeis4.)