OFFSET
1,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
FORMULA
G.f.: x*(1+x+x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = 2*floor((n-1)/3)+n. - Gary Detlefs, Dec 22 2011
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (15*n-12-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 5k-2, a(3k-1) = 5k-3, a(3k-2) = 5k-4. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2+2/sqrt(5))*Pi/10 - log(phi)/sqrt(5) + 3*log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 16 2023
MAPLE
A047223:=n->(15*n-12-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047223(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
MATHEMATICA
Select[Range[100], MemberQ[{1, 2, 3}, Mod[#, 5]]&] (* Harvey P. Dale, Oct 28 2013 *)
LinearRecurrence[{1, 0, 1, -1}, {1, 2, 3, 6}, 100] (* Vincenzo Librandi, Jun 15 2016 *)
PROG
(PARI) a(n)=(n-1)\3*5+n%5 \\ Charles R Greathouse IV, Dec 22 2011
(Magma) [n : n in [0..150] | n mod 5 in [1..3]]; // Wesley Ivan Hurt, Jun 14 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved