login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047223
Numbers that are congruent to {1, 2, 3} mod 5.
21
1, 2, 3, 6, 7, 8, 11, 12, 13, 16, 17, 18, 21, 22, 23, 26, 27, 28, 31, 32, 33, 36, 37, 38, 41, 42, 43, 46, 47, 48, 51, 52, 53, 56, 57, 58, 61, 62, 63, 66, 67, 68, 71, 72, 73, 76, 77, 78, 81, 82, 83, 86, 87, 88, 91, 92, 93, 96, 97, 98, 101, 102, 103, 106, 107
OFFSET
1,2
FORMULA
G.f.: x*(1+x+x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = 2*floor((n-1)/3)+n. - Gary Detlefs, Dec 22 2011
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (15*n-12-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 5k-2, a(3k-1) = 5k-3, a(3k-2) = 5k-4. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2+2/sqrt(5))*Pi/10 - log(phi)/sqrt(5) + 3*log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 16 2023
MAPLE
A047223:=n->(15*n-12-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047223(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
MATHEMATICA
Select[Range[100], MemberQ[{1, 2, 3}, Mod[#, 5]]&] (* Harvey P. Dale, Oct 28 2013 *)
LinearRecurrence[{1, 0, 1, -1}, {1, 2, 3, 6}, 100] (* Vincenzo Librandi, Jun 15 2016 *)
PROG
(PARI) a(n)=(n-1)\3*5+n%5 \\ Charles R Greathouse IV, Dec 22 2011
(Magma) [n : n in [0..150] | n mod 5 in [1..3]]; // Wesley Ivan Hurt, Jun 14 2016
CROSSREFS
Cf. A001622.
Sequence in context: A371276 A175893 A031470 * A004435 A008321 A064472
KEYWORD
nonn,easy
STATUS
approved