OFFSET
1,3
COMMENTS
Also: 0 followed by partial sums of A010686. - R. J. Mathar, Feb 23 2008
Expansion of 1/(1 + x + x^2 + x^3 + x^4 + x^5) = 1 - x + x^6 - x^7 + x^12 - x^13 + ... and the exponents are the terms of this sequence. - Gary W. Adamson, Apr 04 2011
Numbers k such that floor(k/2) = 3*floor(k/6). - Bruno Berselli, Oct 05 2017
LINKS
David Lovler, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
From R. J. Mathar, Feb 23 2008: (Start)
O.g.f.: 1/(1+x) + 3/(-1+x)^2 + 4/(-1+x).
a(n) = a(n-2) + 6, n >= 2. (End)
a(n) = 6*n - a(n-1) - 11 for n>1, a(1)=0. - Vincenzo Librandi, Aug 05 2010
Sum_{n>=2} (-1)^n/a(n) = sqrt(3)*Pi/12 + log(2)/3 + log(3)/4. - Amiram Eldar, Dec 13 2021
E.g.f.: 5 + (3*x - 4)*exp(x) - exp(-x). - David Lovler, Aug 25 2022
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+6 od: seq(a[n], n=0..50); # Zerinvary Lajos, Mar 16 2008
MATHEMATICA
{#, #+1}&/@(6Range[0, 30])//Flatten (* or *) LinearRecurrence[{1, 1, -1}, {0, 1, 6}, 60] (* Harvey P. Dale, Aug 24 2019 *)
PROG
(PARI) forstep(n=0, 200, [1, 5], print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Formula corrected by Paolo P. Lava, Oct 12 2010
STATUS
approved