login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047225
Numbers that are congruent to {0, 1} mod 6.
7
0, 1, 6, 7, 12, 13, 18, 19, 24, 25, 30, 31, 36, 37, 42, 43, 48, 49, 54, 55, 60, 61, 66, 67, 72, 73, 78, 79, 84, 85, 90, 91, 96, 97, 102, 103, 108, 109, 114, 115, 120, 121, 126, 127, 132, 133, 138, 139, 144, 145, 150
OFFSET
1,3
COMMENTS
Also: 0 followed by partial sums of A010686. - R. J. Mathar, Feb 23 2008
Expansion of 1/(1 + x + x^2 + x^3 + x^4 + x^5) = 1 - x + x^6 - x^7 + x^12 - x^13 + ... and the exponents are the terms of this sequence. - Gary W. Adamson, Apr 04 2011
Numbers k such that floor(k/2) = 3*floor(k/6). - Bruno Berselli, Oct 05 2017
FORMULA
From R. J. Mathar, Feb 23 2008: (Start)
O.g.f.: 1/(1+x) + 3/(-1+x)^2 + 4/(-1+x).
a(n) = a(n-2) + 6, n >= 2. (End)
a(n) = 6*n - a(n-1) - 11 for n>1, a(1)=0. - Vincenzo Librandi, Aug 05 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*A082505(k+1). - Philippe Deléham, Oct 17 2011
Sum_{n>=2} (-1)^n/a(n) = sqrt(3)*Pi/12 + log(2)/3 + log(3)/4. - Amiram Eldar, Dec 13 2021
E.g.f.: 5 + (3*x - 4)*exp(x) - exp(-x). - David Lovler, Aug 25 2022
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+6 od: seq(a[n], n=0..50); # Zerinvary Lajos, Mar 16 2008
MATHEMATICA
{#, #+1}&/@(6Range[0, 30])//Flatten (* or *) LinearRecurrence[{1, 1, -1}, {0, 1, 6}, 60] (* Harvey P. Dale, Aug 24 2019 *)
PROG
(PARI) forstep(n=0, 200, [1, 5], print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Formula corrected by Paolo P. Lava, Oct 12 2010
STATUS
approved