login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to {0, 1} mod 6.
7

%I #62 Feb 17 2024 10:33:44

%S 0,1,6,7,12,13,18,19,24,25,30,31,36,37,42,43,48,49,54,55,60,61,66,67,

%T 72,73,78,79,84,85,90,91,96,97,102,103,108,109,114,115,120,121,126,

%U 127,132,133,138,139,144,145,150

%N Numbers that are congruent to {0, 1} mod 6.

%C Also: 0 followed by partial sums of A010686. - _R. J. Mathar_, Feb 23 2008

%C Expansion of 1/(1 + x + x^2 + x^3 + x^4 + x^5) = 1 - x + x^6 - x^7 + x^12 - x^13 + ... and the exponents are the terms of this sequence. - _Gary W. Adamson_, Apr 04 2011

%C Numbers k such that floor(k/2) = 3*floor(k/6). - _Bruno Berselli_, Oct 05 2017

%H David Lovler, <a href="/A047225/b047225.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F From _R. J. Mathar_, Feb 23 2008: (Start)

%F O.g.f.: 1/(1+x) + 3/(-1+x)^2 + 4/(-1+x).

%F a(n) = a(n-2) + 6, n >= 2. (End)

%F a(n) = 6*n - a(n-1) - 11 for n>1, a(1)=0. - _Vincenzo Librandi_, Aug 05 2010

%F a(n+1) = Sum_{k>=0} A030308(n,k)*A082505(k+1). - _Philippe Deléham_, Oct 17 2011

%F Sum_{n>=2} (-1)^n/a(n) = sqrt(3)*Pi/12 + log(2)/3 + log(3)/4. - _Amiram Eldar_, Dec 13 2021

%F E.g.f.: 5 + (3*x - 4)*exp(x) - exp(-x). - _David Lovler_, Aug 25 2022

%p a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+6 od: seq(a[n], n=0..50); # _Zerinvary Lajos_, Mar 16 2008

%t {#,#+1}&/@(6Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{0,1,6},60] (* _Harvey P. Dale_, Aug 24 2019 *)

%o (PARI) forstep(n=0,200,[1,5],print1(n", ")) \\ _Charles R Greathouse IV_, Oct 17 2011

%Y Cf. A010686, A030308, A082505.

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_

%E Formula corrected by _Paolo P. Lava_, Oct 12 2010