login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008856
Numbers n such that n^3 and n have same last 2 digits.
2
0, 1, 24, 25, 49, 51, 75, 76, 99, 100, 101, 124, 125, 149, 151, 175, 176, 199, 200, 201, 224, 225, 249, 251, 275, 276, 299, 300, 301, 324, 325, 349, 351, 375, 376, 399, 400, 401, 424, 425, 449, 451, 475, 476, 499, 500, 501, 524, 525, 549, 551, 575, 576, 599
OFFSET
1,3
COMMENTS
The first two terms are included by assuming a leading zero digit. - Harvey P. Dale, Sep 07 2013
n such that n == 0, 1, or 24 (mod 25) and n == 0, 1 or 3 (mod 4). - Robert Israel, Nov 30 2015
REFERENCES
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 459.
FORMULA
a(9n)=100*n, a(9n+1)=100*n+1, a(9n+2)=100*n+24, a(9n+3)=100*n+25, a(9n+4)=100*n+49, a(9n+5)=100*n+51, a(9n+6)=100*n+75, a(9n+7)=100*n+76, a(9n+8)=100*n+99. - Franklin T. Adams-Watters, Mar 13 2006
From Colin Barker, Nov 30 2015: (Start)
a(n) = a(n-1)+a(n-9)-a(n-10) for n>10.
G.f.: x^2*(1+23*x+x^2+24*x^3+2*x^4+24*x^5+x^6+23*x^7+x^8) / ((1-x)^2 * (1+x+x^2)*(1+x^3+x^6)). (End)
MAPLE
for n to 1000 do if n^3 - n mod 100 = 0 then print(n); fi; od;
MATHEMATICA
Join[{0, 1}, Select[Range[10, 600], Take[IntegerDigits[#], -2] == Take[ IntegerDigits[ #^3], -2]&]] (* Harvey P. Dale, Sep 07 2013 *)
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 24, 25, 49, 51, 75, 76, 99, 100}, 60] (* G. C. Greubel, Nov 30 2015, modified Sep 13 2019 *)
PROG
(PARI) concat(0, Vec(x^2*(1+23*x+x^2+24*x^3+2*x^4+24*x^5+x^6+23*x^7 +x^8)/((1-x)^2*(1+x+x^2)*(1+x^3+x^6)) + O(x^60))) \\ Colin Barker, Nov 30 2015
(Magma) [n: n in [0..600] | (n^3 - n) mod 100 eq 0]; // Vincenzo Librandi, Dec 01 2015
(Sage)
def A008856_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(x*(1+23*x+x^2+24*x^3+2*x^4+24*x^5+x^6+23*x^7+x^8)/((1-x)*(1-x^9))).list()
A008856_list(60) # G. C. Greubel, Sep 13 2019
(GAP) a:=[0, 1, 24, 25, 49, 51, 75, 76, 99, 100];; for n in [10..60] do a[n]:= a[n-1]+a[n-9]-a[n-10]; od; a; # G. C. Greubel, Sep 13 2019
CROSSREFS
KEYWORD
nonn,easy,base
STATUS
approved