The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008859 a(n) = Sum_{k=0..6} binomial(n,k). 18
1, 2, 4, 8, 16, 32, 64, 127, 247, 466, 848, 1486, 2510, 4096, 6476, 9949, 14893, 21778, 31180, 43796, 60460, 82160, 110056, 145499, 190051, 245506, 313912, 397594, 499178, 621616, 768212, 942649, 1149017, 1391842, 1676116, 2007328 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n) is the maximal number of regions in 6-space formed by n-1 5-dimensional hypercubes. - Christian Schroeder, Jan 04 2016
a(n) is the number of binary words of length n matching the regular expression 0*1*0*1*0*1*0*. A000124, A000125, A000127, A006261 count binary words of the form 0*1*0*, 1*0*1*0*, 0*1*0*1*0*, and 1*0*1*0*1*0*, respectively. - Manfred Scheucher, Jun 22 2023
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
LINKS
Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
FORMULA
a(n) = Sum_{k=0..3} binomial(n+1, 2*k). - Len Smiley, Oct 20 2001
O.g.f.: (1 - 5*x + 11*x^2 - 13*x^3 + 9*x^4 - 3*x^5 + x^6)/(1-x)^7. - R. J. Mathar, Apr 02 2008
a(n) = a(n-1) + A006261(n-1). - Christian Schroeder, Jan 04 2016
a(n) = (n^6 - 9*n^5 + 55*n^4 - 75*n^3 + 304*n^2 + 444*n + 720)/720. - Gerry Martens , May 04 2016
E.g.f.: (720 + 720*x + 360*x^2 + 120*x^3 + 30*x^4 + 6*x^5 + x^6)*exp(x)/6!. - Ilya Gutkovskiy, May 04 2016
MAPLE
A008859 := proc(n)
add(binomial(n, k), k=0..6) ;
end proc: # R. J. Mathar, Oct 30 2015
MATHEMATICA
Table[Sum[Binomial[n, k], {k, 0, 6}], {n, 0, 40}] (* Harvey P. Dale, Jan 16 2012 *)
PROG
(Haskell)
a008859 = sum . take 7 . a007318_row -- Reinhard Zumkeller, Nov 24 2012
(PARI) a(n)=sum(k=0, 6, binomial(n, k)) \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [(&+[Binomial(n, k): k in [0..6]]): n in [0..40]]; // G. C. Greubel, Sep 13 2019
(Sage) [sum(binomial(n, k) for k in (0..6)) for n in (0..40)] # G. C. Greubel, Sep 13 2019
(GAP) List([0..40], n-> Sum([0..6], k-> Binomial(n, k)) ); # G. C. Greubel, Sep 13 2019
CROSSREFS
Sequence in context: A235701 A054044 A325741 * A335247 A145113 A062257
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 19:43 EDT 2024. Contains 373410 sequences. (Running on oeis4.)