login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219531 a(n) = Sum_{k=0..11} C(n, k). 11
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4095, 8178, 16278, 32192, 63019, 121670, 230964, 430104, 784626, 1401292, 2449868, 4194304, 7036530, 11576916, 18696432, 29666704, 46295513, 71116846, 107636402, 160645504, 236618693, 344212906, 494889092 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is the number of compositions (ordered partitions) of n+1 into twelve or fewer parts. a(n) = sum(binomial(n + 1, 2k - 1), for k = 1 .. 6). a(n) is the sum of the first twelve terms in the n-th row of Pascal's triangle.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).

FORMULA

a(n) = 1 + (n^11 - 44*n^10 + 935*n^9 - 11550*n^8 + 94083*n^7 - 497112*n^6 +1870385*n^5 -3920950*n^4 +8550916*n^3 +4429656*n^2 +29400480*n)/11!. a(n) = 2*a(n - 1), for 1 <= n <= 11 with a(0) = 1, a(n) = 2*a(n - 1) - C(n - 1, 11), for n > 11. - Mohamed

G.f.: (1 - 10*x + 46*x^2 - 128*x^3 + 239*x^4 - 314*x^5 + 296*x^6 - 200*x^7 + 95*x^8 - 30*x^9 + 6*x^10)/(1-x)^12. - Mokhtar Mohamed, Nov 23 2012

MAPLE

seq(sum(binomial(n, j), j=0..11), n=0..40); # G. C. Greubel, Sep 13 2019

MATHEMATICA

Table[Sum[Binomial[n, k], {k, 0, 11}], {n, 0, 40}] (* T. D. Noe, Nov 23 2012 *)

LinearRecurrence[{12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1}, {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}, 40] (* Harvey P. Dale, Sep 19 2019 *)

PROG

(Haskell)

a219531 = sum . take 12 . a007318_row -- Reinhard Zumkeller, Nov 24 2012

(Python)

A219531_list, m = [], [1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1, 1]

for _ in range(10**2):

A219531_list.append(m[-1])

for i in range(11):

m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016

(PARI) vector(40, n, sum(j=0, 11, binomial(n-1, j))) \\ G. C. Greubel, Sep 13 2019

(Magma) [(&+[Binomial(n, k): k in [0..11]]): n in [0..40]]; // G. C. Greubel, Sep 13 2019

(Sage) [sum(binomial(n, k) for k in (0..11)) for n in (0..40)] # G. C. Greubel, Sep 13 2019

(GAP) List([0..40], n-> Sum([0..11], k-> Binomial(n, k)) ); # G. C. Greubel, Sep 13 2019

CROSSREFS

Cf. A000127, A006261, A008859, A008860, A008861, A008862, A008863.

Cf. A007318.

Sequence in context: A227843 A271482 A335890 * A168083 A221180 A219615

Adjacent sequences: A219528 A219529 A219530 * A219532 A219533 A219534

KEYWORD

nonn,easy

AUTHOR

Mokhtar Mohamed, Nov 21 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 09:03 EST 2022. Contains 358515 sequences. (Running on oeis4.)