login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219532
O.g.f. satisfies: A(x) = Sum_{n>=0} n^n*(n+1)^(n-1) * exp(-n*(n+1)*x/A(x)) * (x/A(x))^n / n!.
0
1, 1, 3, 28, 427, 9096, 248298, 8258552, 323891811, 14636853712, 749171687006, 42853503567480, 2710099789775566, 187811949192251632, 14156747168376595956, 1153316446792123524144, 100995199848878125787555, 9461277820648354922926368, 944228520086488255850280918
OFFSET
0,3
EXAMPLE
O.g.f.: A(x) = 1 + x + 3*x^2 + 28*x^3 + 427*x^4 + 9096*x^5 + 248298*x^6 +...
where
A(x) = 1 + 1^1*2^0*exp(-1*2*x/A(x))*x/A(x) + 2^2*3^1*exp(-2*3*x/A(x))*x^2/A(x)^2/2! + 3^3*4^2*exp(-3*4*x/A(x))*x^3/A(x)^3/3! + 4^4*5^3*exp(-4*5*x/A(x))*x^4/A(x)^4/4! + 5^5*6^4*exp(-5*6*x)*x^5/A(x)/5! +...
PROG
(PARI) {a(n)=local(A=1); for(i=1, n, A=sum(m=0, n, m^m*(m+1)^(m-1)*(x/A)^m*exp(-m*(m+1)*x/A+x*O(x^n))/m!)); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A217900.
Sequence in context: A298696 A359917 A143636 * A376034 A319369 A340789
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 21 2012
STATUS
approved