login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298696
G.f.: Sum_{n>=0} binomial(n*(n+1), n)/(n+1) * x^n / (1 + x)^(n*(n+1)).
4
1, 1, 3, 28, 410, 8386, 220962, 7140736, 273712896, 12146997564, 612813677300, 34647736132384, 2170381958609592, 149223874286440552, 11173356309069883320, 905099760309260722560, 78870011549256151244288, 7356892186010414244194704, 731435433368215011644979504, 77216368897429504869064200256, 8626428901029156775683110378400, 1016792561657783042048699052986016
OFFSET
0,3
COMMENTS
Compare g.f. to: 1 = Sum_{n>=0} binomial(m*(n+1), n)/(n+1) * x^n / (1+x)^(m*(n+1)) holds for fixed m.
LINKS
FORMULA
a(n) ~ c * d^n * n! / n^2, where d = -4 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 6.176554609483480358231680164050876553672889... and c = 0.226094037474708064867716267720651240574569526310006844420310030408773601638... - Vaclav Kotesovec, Feb 07 2018
c = exp(LambertW(-2*exp(-2))^2/8 - 1/2) * sqrt(2) * (2 + LambertW(-2*exp(-2))) / (4*Pi*sqrt(-LambertW(-2*exp(-2))) * sqrt(1 + LambertW(-2*exp(-2)))). - Vaclav Kotesovec, Mar 18 2022
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 28*x^3 + 410*x^4 + 8386*x^5 + 220962*x^6 + 7140736*x^7 + 273712896*x^8 + 12146997564*x^9 + 612813677300*x^10 + ...
such that
A(x) = 1 + C(2,1)/2*x/(1+x)^2 + C(6,2)/3*x^2/(1+x)^6 + C(12,3)/4*x^3/(1+x)^12 + C(20,4)/5*x^4/(1+x)^20 + C(30,5)/6*x^5/(1+x)^30 + ...
more explicitly,
A(x) = 1 + x/(1+x)^2 + 5*x^2/(1+x)^6 + 55*x^3/(1+x)^12 + 969*x^4/(1+x)^20 + 23751*x^5/(1+x)^30 + ... + A135861(n)*x^n/(1+x)^(n*(n+1)) + ...
MATHEMATICA
terms = 22; s = Sum[Binomial[n*(n + 1), n]/(n + 1)*x^n/(1 + x)^(n*(n + 1)), {n, 0, terms}] + O[x]^terms; CoefficientList[s, x] (* Jean-François Alcover, Feb 05 2018 *)
PROG
(PARI) {a(n) = my(A = sum(m=0, n, binomial(m*(m+1), m)/(m+1)*x^m/(1+x +x*O(x^n))^(m*(m+1)) ) ); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A048954 A086569 A264639 * A359917 A143636 A219532
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2018
STATUS
approved