login
A143636
E.g.f. satisfies: A(x) = exp(x*A(((x+1)^5-1)/5)).
2
1, 1, 3, 28, 413, 9216, 289111, 11925964, 624637785, 40422282112, 3159287760491, 292875271947468, 31733363437993285, 3969285168539789008, 567118401777735330447, 91714059231986721233596
OFFSET
0,3
LINKS
MAPLE
A:= proc(n, k::nonnegint) option remember; if n<=0 or k=0 then 1 else A(n-1, k)(((x+1)^k-1)/k) fi; unapply(convert(series(exp(x*%), x, n+1), polynom), x) end: a:= n-> coeff(A(n, 5)(x), x, n)*n!: seq(a(n), n=0..21);
MATHEMATICA
A[n_, k_] := Module[{f}, f[x_] = If[n <= 0 || k == 0, 1, A[n-1, k][((x+1)^k-1)/k]]; Normal[Series[Exp[x*f[x]], { x, 0, n+1}]] /. x -> #]&; a[n_] := Coefficient[A[n, 5][x], x, n]*n!; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Feb 14 2014, after Maple *)
CROSSREFS
Cf. 5th column of A143632.
Sequence in context: A264639 A298696 A359917 * A219532 A376034 A319369
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 27 2008
STATUS
approved