login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143632
Table T(n,k), n>=0, k>=0, read by antidiagonals, where the e.g.f. for column k satisfies A_k(x) = exp(x*A_k(((x+1)^k-1)/k)) if k>0 and A_0(x) = exp(x*A_0(0)) = exp(x).
10
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 16, 1, 1, 1, 3, 19, 125, 1, 1, 1, 3, 22, 185, 1296, 1, 1, 1, 3, 25, 253, 2541, 16807, 1, 1, 1, 3, 28, 329, 4256, 45787, 262144, 1, 1, 1, 3, 31, 413, 6471, 96727, 1037359, 4782969, 1, 1, 1, 3, 34, 505, 9216, 175747, 2828274, 28649553, 100000000, 1
OFFSET
0,9
LINKS
EXAMPLE
Table begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 3, 3, 3, 3, 3, ...
1, 16, 19, 22, 25, 28, ...
1, 125, 185, 253, 329, 413, ...
1, 1296, 2541, 4256, 6471, 9216, ...
MAPLE
A:= proc(n, k) option remember; if n<=0 or k=0 then 1 else A(n-1, k)(((x+1)^k-1)/k) fi; unapply(convert(series(exp(x*%), x, n+1), polynom), x) end: T:= (n, k)-> coeff(A(n, k)(x), x, n)*n!: seq(seq(T(n, d-n), n=0..d), d=0..11);
MATHEMATICA
a[n_, k_][x_] := Module[{f}, f = If[n <= 0 || k == 0, 1, a[n-1, k][((#+1)^k-1)/k]]&; Normal[Series[Exp[y*f[y]], {y, 0, n+1}]] /. y -> x]; t[n_, k_] := Coefficient[a[n, k][x], x, n]*n!; Table[t[n, d-n], {d, 0, 11}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 12 2014, translated from Maple *)
CROSSREFS
Main diagonal gives A306578.
Sequence in context: A344300 A323840 A195644 * A336455 A130605 A354872
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 27 2008
STATUS
approved