Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Feb 24 2019 17:05:53
%S 1,1,1,1,1,1,1,1,3,1,1,1,3,16,1,1,1,3,19,125,1,1,1,3,22,185,1296,1,1,
%T 1,3,25,253,2541,16807,1,1,1,3,28,329,4256,45787,262144,1,1,1,3,31,
%U 413,6471,96727,1037359,4782969,1,1,1,3,34,505,9216,175747,2828274,28649553,100000000,1
%N Table T(n,k), n>=0, k>=0, read by antidiagonals, where the e.g.f. for column k satisfies A_k(x) = exp(x*A_k(((x+1)^k-1)/k)) if k>0 and A_0(x) = exp(x*A_0(0)) = exp(x).
%H Alois P. Heinz, <a href="/A143632/b143632.txt">Antidiagonals n = 0..99, flattened</a>
%e Table begins:
%e 1, 1, 1, 1, 1, 1, ...
%e 1, 1, 1, 1, 1, 1, ...
%e 1, 3, 3, 3, 3, 3, ...
%e 1, 16, 19, 22, 25, 28, ...
%e 1, 125, 185, 253, 329, 413, ...
%e 1, 1296, 2541, 4256, 6471, 9216, ...
%p A:= proc(n,k) option remember; if n<=0 or k=0 then 1 else A(n-1,k)(((x+1)^k-1)/k) fi; unapply(convert(series(exp(x*%), x,n+1), polynom), x) end: T:= (n,k)-> coeff(A(n,k)(x), x,n)*n!: seq(seq(T(n,d-n), n=0..d), d=0..11);
%t a[n_, k_][x_] := Module[{f}, f = If[n <= 0 || k == 0, 1, a[n-1, k][((#+1)^k-1)/k]]&; Normal[Series[Exp[y*f[y]], {y, 0, n+1}]] /. y -> x]; t[n_, k_] := Coefficient[a[n, k][x], x, n]*n!; Table[t[n, d-n], {d, 0, 11}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Feb 12 2014, translated from Maple *)
%Y Columns k=0-9 give: A000012, A000272, A143633, A143634, A143635, A143636, A143637, A143638, A143639, A143640.
%Y Main diagonal gives A306578.
%K nonn,tabl
%O 0,9
%A _Alois P. Heinz_, Aug 27 2008