login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130605
Polynomial Generalized Cartan Matrices like the B_n type: m4by4={{2, -1, 0, 0}, {-1, 2, -1, 0}, {0, -1, 2, -n}, {0, 0, -1, 2}} For B_4 the n=2: here n=3 is used in the general n X n matrix polynomials P(n,x). Since the C_n types are symmetrical, they have the same polynomials. For 2 X 2 this n=3 is the G_2 14 dimensional exceptional group.
0
-3, 1, 1, 1, -4, 1, 0, -8, 6, -1, -1, -12, 19, -8, 1, -2, -15, 44, -34, 10, -1, -3, -16, 84, -104, 53, -12, 1, 6, -59, 202, -295, 210, -77, 14, -1, 12, -124, 463, -792, 715, -364, 105, -16, 1, 24, -260, 1050, -2047, 2222, -1443, 574, -137, 18, -1, 48, -544, 2360, -5144, 6491, -5108, 2591, -848, 173, -20, 1
OFFSET
1,1
COMMENTS
Absolute value row sum: Table[Apply[Plus, Abs[CoefficientList[a[[m]], x]]], {m, 1, Length[a]}] /. n -> 3 {3, 2, 6, 15, 41, 106, 273, 864, 2592, 7776, 23328} Which suggests the pattern of the determinants as detM= even-f(m)*n might not hold for the 0th matrix being -n: -1 may fit the pattern better. To get the polynomials I programmed the matrices individually in Mathematica to the m=10 level and took their characteristic polynomials ( long listing).
FORMULA
P(n,x)->listing below in Mathematica. a(n,m) = CoefficientList[P(n,x),x]
EXAMPLE
{-3},
{1, 1},
{1, -4, 1},
{0, -8, 6, -1},
{-1, -12, 19, -8, 1},
{-2, -15, 44, -34, 10, -1},
{-3, -16, 84, -104, 53, -12, 1},
{6, -59, 202, -295, 210, -77, 14, -1},
{12, -124,463, -792, 715, -364, 105, -16, 1},
{24, -260, 1050, -2047, 2222, -1443, 574, -137, 18, -1},
{48, -544, 2360, -5144, 6491, -5108, 2591, -848, 173, -20, 1}
MATHEMATICA
a = Factor[ {-n, x -(2 - n), 4 - n - 4 x + x^2, 6 - 2 n - 11 x + n x + 6 x^2 - x^3, 8 - 3 n - 24 x + 4 n x + 22 x^2 - n x^2 - 8 x^3 + x^4, 10 - 4 n - 45 x + 10 n x + 62 x^2 - 6 n x^2 - 37 x^3 + n x^3 + 10 x^4 - x^5, 12 - 5 n - 76 x + 20 n x + 147 x^2 - 21 n x^2 - 128 x^3 + 8 n x^3 + 56 x^4 - n x^4 - 12 x^5 + x^6, 24 - 6 n - 164 x + 35 n x + 370 x^2 - 56 n x^2 - 403 x^3 + 36 n x^3 + 240 x^4 - 10 n x^4 - 80 x^5 + n x^5 + 14 x^6 - x^7, 48 - 12 n - 352 x + 76 n x + 904 x^2 - 147 n x^2 - 1176 x^3 + 128 n x^3 + 883x^4 - 56 n x^4 - 400 x^5 + 12 n x^5 + 108 x^6 - n x^6 - 16 x^7 + x^8, 96 - 24 n - 752 x + 164 n x + 2160 x^2 - 370 n x^2 - 3256 x\^3 + 403 n x^3 + 2942 x^4 - 240 n x^4 - 1683 x^5 + 80 n x^5 + 616 x^6 - 14 n x^6 - 140 x^7 + n x^7 + 18 x^8 - x^9, 192 - 48 n - 1600 x + 352 n x + 5072 x^2 - 904 n x^2 - 8672 x^3 + 1176 n x^3 + 9140 x^4 - 883 n x^4 - 6308 x^5 + 400 n x^5 + 2915 x^6 - 108 n x^6 - 896 x^7 + 16 n x^7 + 176 x^8 - n x^8 - 20 x^9 + x^10} ] b = Table[ CoefficientList[ a[ \([ \)\(m\)\( ]\) ], x ], {m, 1, Length[ a ]} ]; b /. n -> 3; Flatten[ % ]
CROSSREFS
Sequence in context: A195644 A143632 A336455 * A354872 A368335 A157261
KEYWORD
uned,sign
AUTHOR
Roger L. Bagula, Jun 17 2007
STATUS
approved