login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368335
The number of divisors of the largest term of A054744 that divides of n.
6
1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 4, 3, 1, 1, 1, 6, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1
OFFSET
1,4
LINKS
FORMULA
Multiplicative with a(p^e) = 1 if e < p, and a(p^e) = e+1 if e >= p.
a(n) = A000005(A368333(n)).
a(n) >= 1, with equality if and only if n is in A048103.
a(n) <= A000005(n), with equality if and only if n is in A054744.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 1/p^(p*s-1) + 1/p^((p+1)*s) - 1/p^((p+1)*s-1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + (1 + (p-1)*p)/((p-1)*p^p)) = 1.98019019497523582894... .
MATHEMATICA
f[p_, e_] := If[e < p, 1, e+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] < f[i, 1], 1, f[i, 2]+1)); }
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Dec 21 2023
STATUS
approved