login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368334
The number of terms of A054744 that are unitary divisors of n.
5
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
OFFSET
1,4
COMMENTS
First differs from A081117 at n = 28.
Also, the number of terms of A072873 that are unitary divisors of n.
LINKS
FORMULA
Multiplicative with a(p^e) = 1 if e < p, and a(p^e) = 2 if e >= p.
a(n) = A034444(A368333(n)).
a(n) = A034444(A327939(n)).
a(n) >= 1, with equality if and only if n is in A048103.
a(n) <= A034444(n), with equality if and only if n is in A054744.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(p*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/p^p) = 1.29671268566745796443... .
MATHEMATICA
f[p_, e_] := If[e < p, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] < f[i, 1], 1, 2)); }
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Dec 21 2023
STATUS
approved