login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129252
Smallest prime factor p of n such that p^p is a divisor of n, a(n)=1 if no such factor exists.
3
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2
OFFSET
1,4
LINKS
FORMULA
a(n) = 1 iff A129251(n) = 0.
a(A048103(n)) = 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 - 1/p^p) + Sum_{p prime} ((1/p^(p-1)) * Product_{primes q < p} (1-1/q^q)) = 1.30648526015949409005... . - Amiram Eldar, Nov 07 2022
EXAMPLE
For n = 108 = 2^2 * 3^3, it is 2 that is the smallest prime factor p satisfying p^p | 108, thus a(108) = 2.
MATHEMATICA
Array[If[IntegerQ@ #, #, 1] &@ First@ SelectFirst[FactorInteger[#], #1 <= #2 & @@ # &] &, 120] (* Michael De Vlieger, Oct 01 2019 *)
PROG
(PARI) A129252(n) = { my(f = factor(n)); for(k=1, #f~, if(f[k, 2]>=f[k, 1], return(f[k, 1]))); (1); }; \\ Antti Karttunen, Oct 01 2019
CROSSREFS
Differs from A327936 for the first time at n=108.
Sequence in context: A268238 A081117 A368334 * A327936 A333748 A022929
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 07 2007
EXTENSIONS
Data section extended to a(120) by Antti Karttunen, Oct 01 2019
STATUS
approved