login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130608
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+167)^2 = y^2.
5
0, 28, 385, 501, 645, 2668, 3340, 4176, 15957, 19873, 24745, 93408, 116232, 144628, 544825, 677853, 843357, 3175876, 3951220, 4915848, 18510765, 23029801, 28652065, 107889048, 134227920, 166996876, 628823857, 782338053, 973329525, 3665054428, 4559800732
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+167, y).
Corresponding values y of solutions (x, y) are in A159777.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (171+26*sqrt(2))/167 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (56211+34510*sqrt(2))/167^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3)-a(n-6)+334 for n > 6; a(1)=0, a(2)=28, a(3)=385, a(4)=501, a(5)=645, a(6)=2668.
G.f.: x*(28+357*x+116*x^2-24*x^3-119*x^4-24*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 167*A001652(k) for k >= 0.
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 28, 385, 501, 645, 2668, 3340}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
PROG
(PARI) {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+334*n+27889), print1(n, ", ")))}
CROSSREFS
Cf. A159777, A028871, A118337, A118675, A118676, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159778 (decimal expansion of (171+26*sqrt(2))/167), A159779 (decimal expansion of (56211+34510*sqrt(2))/167^2).
Sequence in context: A010944 A022623 A077507 * A331353 A177108 A283637
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Jun 17 2007
EXTENSIONS
Edited and two terms added by Klaus Brockhaus, Apr 30 2009
STATUS
approved