login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118675
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+47)^2 = y^2.
9
0, 16, 85, 141, 225, 616, 940, 1428, 3705, 5593, 8437, 21708, 32712, 49288, 126637, 190773, 287385, 738208, 1112020, 1675116, 4302705, 6481441, 9763405, 25078116, 37776720, 56905408, 146166085, 220178973, 331669137, 851918488, 1283297212, 1933109508
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+47, y).
Corresponding values y of solutions (x, y) are in A159750.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (51+14*sqrt(2))/47 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3267+1702*sqrt(2))/47^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3) -a(n-6) +94 for n > 6; a(1)=0, a(2)=16, a(3)=85, a(4)=141, a(5)=225, a(6)=616.
G.f.: x*(16+69*x+56*x^2-12*x^3-23*x^4-12*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 47*A001652(k) for k >= 0.
MATHEMATICA
Select[Range[0, 100000], IntegerQ[Sqrt[#^2+(#+47)^2]]&] (* or *) LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 16, 85, 141, 225, 616, 940}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
PROG
(PARI) {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+94+2209), print1(n, ", ")))}
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(16+69*x+56*x^2-12*x^3-23*x^4-12*x^5)/((1-x)*(1-6*x^3 +x^6)))); // G. C. Greubel, May 07 2018
CROSSREFS
Cf. A159750, A028871, A118337, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159751 (decimal expansion of (51+14*sqrt(2))/47), A159752 (decimal expansion of (3267+1702*sqrt(2))/47^2).
Sequence in context: A172219 A172213 A231941 * A223962 A252834 A183777
KEYWORD
nonn
AUTHOR
Mohamed Bouhamida, May 19 2006
EXTENSIONS
Edited by Klaus Brockhaus, Apr 30 2009
STATUS
approved