login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+47)^2 = y^2.
9

%I #16 Sep 08 2022 08:45:25

%S 0,16,85,141,225,616,940,1428,3705,5593,8437,21708,32712,49288,126637,

%T 190773,287385,738208,1112020,1675116,4302705,6481441,9763405,

%U 25078116,37776720,56905408,146166085,220178973,331669137,851918488,1283297212,1933109508

%N Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+47)^2 = y^2.

%C Also values x of Pythagorean triples (x, x+47, y).

%C Corresponding values y of solutions (x, y) are in A159750.

%C For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.

%C lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).

%C lim_{n -> infinity} a(n)/a(n-1) = (51+14*sqrt(2))/47 for n mod 3 = {1, 2}.

%C lim_{n -> infinity} a(n)/a(n-1) = (3267+1702*sqrt(2))/47^2 for n mod 3 = 0.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,6,-6,0,-1,1).

%F a(n) = 6*a(n-3) -a(n-6) +94 for n > 6; a(1)=0, a(2)=16, a(3)=85, a(4)=141, a(5)=225, a(6)=616.

%F G.f.: x*(16+69*x+56*x^2-12*x^3-23*x^4-12*x^5)/((1-x)*(1-6*x^3+x^6)).

%F a(3*k+1) = 47*A001652(k) for k >= 0.

%t Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+47)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,16,85,141,225,616,940},50] (* _Vladimir Joseph Stephan Orlovsky_, Feb 02 2012 *)

%o (PARI) {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+94+2209), print1(n, ",")))}

%o (Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(16+69*x+56*x^2-12*x^3-23*x^4-12*x^5)/((1-x)*(1-6*x^3 +x^6)))); // _G. C. Greubel_, May 07 2018

%Y Cf. A159750, A028871, A118337, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159751 (decimal expansion of (51+14*sqrt(2))/47), A159752 (decimal expansion of (3267+1702*sqrt(2))/47^2).

%K nonn

%O 1,2

%A _Mohamed Bouhamida_, May 19 2006

%E Edited by _Klaus Brockhaus_, Apr 30 2009