login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183777
Half the number of (n+1) X 5 binary arrays with no 2 X 2 subblock having exactly 2 ones.
1
85, 567, 3435, 21935, 136843, 864671, 5431499, 34228999, 215374371, 1356329167, 8537916907, 53757639287, 338436138739, 2130795330527, 13415038654331, 84459841870343, 531746080445251, 3347809160159215, 21077341291331531
OFFSET
1,1
COMMENTS
Column 4 of A183782.
FORMULA
Empirical: a(n) = 5*a(n-1) + 26*a(n-2) - 98*a(n-3) - 188*a(n-4) + 580*a(n-5) + 392*a(n-6) - 1024*a(n-7) - 256*a(n-8) + 512*a(n-9).
Empirical g.f.: x*(85 + 142*x - 1610*x^2 - 1652*x^3 + 9404*x^4 + 4072*x^5 - 16544*x^6 - 3072*x^7 + 8192*x^8) / (1 - 5*x - 26*x^2 + 98*x^3 + 188*x^4 - 580*x^5 - 392*x^6 + 1024*x^7 + 256*x^8 - 512*x^9). - Colin Barker, Apr 04 2018
Empirical formula verified by Robert Israel, Jul 01 2018: see link.
EXAMPLE
Some solutions with a(1,1)=0 for 3 X 5:
0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0
1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0
CROSSREFS
Cf. A183782.
Sequence in context: A264425 A250463 A339870 * A297599 A173470 A202009
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 07 2011
STATUS
approved