login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183775
Half the number of (n+1) X 3 binary arrays with no 2 X 2 subblock having exactly 2 ones.
2
4, 13, 47, 161, 567, 1969, 6887, 24001, 83799, 292305, 1020103, 3559137, 12419383, 43333873, 151206055, 527598593, 1840949015, 6423592977, 22413786247, 78208138529, 272890816759, 952194714417, 3322482302055, 11593099229761, 40451669182167, 141147546049105, 492504521037895
OFFSET
0,1
FORMULA
Empirical: a(n) = 3*a(n-1) + 4*a(n-2) - 8*a(n-3).
Empirical g.f.: (4 + x - 8*x^2) / (1 - 3*x - 4*x^2 + 8*x^3). - Colin Barker, Apr 04 2018
The above g.f. is correct. See A183782 for bounds on the order of the recurrence. - Andrew Howroyd, Jan 09 2025
EXAMPLE
Some solutions with a(1,1)=0 for 5 X 3:
..0..1..0....0..1..1....0..0..0....0..1..0....0..1..0....0..0..0....0..0..0
..1..1..1....1..1..1....1..0..1....1..1..1....1..1..1....0..0..1....0..0..0
..1..0..1....1..1..1....0..0..0....1..1..1....1..0..1....0..1..1....1..0..0
..0..0..0....1..1..0....0..0..0....1..1..1....0..0..0....1..1..1....1..1..0
..0..0..0....1..1..1....0..1..0....1..1..1....1..0..0....1..1..0....1..1..1
CROSSREFS
Column k=2 of A183782.
Sequence in context: A354550 A143566 A098841 * A363547 A017944 A017945
KEYWORD
nonn,easy,changed
AUTHOR
R. H. Hardin, Jan 07 2011
EXTENSIONS
a(0) prepended by Andrew Howroyd, Jan 09 2025
STATUS
approved