login
A363547
G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - x^k)^2) ).
3
1, 1, 4, 13, 47, 168, 635, 2420, 9460, 37445, 150309, 609568, 2495710, 10298332, 42793974, 178910161, 752034697, 3176346092, 13473881397, 57378127986, 245205968960, 1051257068207, 4520229295852, 19488595397346, 84231899582543, 364893870958302
OFFSET
0,3
LINKS
FORMULA
A(x) = (1 - x)^2 * (B(x)/x - 2) where B(x) is the g.f. of A029857.
PROG
(PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-x^k)^2))+x*O(x^n))); Vec(A);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 09 2023
STATUS
approved