%I #14 Jun 09 2023 15:05:02
%S 1,1,4,13,47,168,635,2420,9460,37445,150309,609568,2495710,10298332,
%T 42793974,178910161,752034697,3176346092,13473881397,57378127986,
%U 245205968960,1051257068207,4520229295852,19488595397346,84231899582543,364893870958302
%N G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - x^k)^2) ).
%H Seiichi Manyama, <a href="/A363547/b363547.txt">Table of n, a(n) for n = 0..1000</a>
%F A(x) = (1 - x)^2 * (B(x)/x - 2) where B(x) is the g.f. of A029857.
%o (PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-x^k)^2))+x*O(x^n))); Vec(A);
%Y Cf. A052855, A363548.
%Y Cf. A029857, A363545.
%K nonn
%O 0,3
%A _Seiichi Manyama_, Jun 09 2023