login
G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - x^k)^2) ).
3

%I #14 Jun 09 2023 15:05:02

%S 1,1,4,13,47,168,635,2420,9460,37445,150309,609568,2495710,10298332,

%T 42793974,178910161,752034697,3176346092,13473881397,57378127986,

%U 245205968960,1051257068207,4520229295852,19488595397346,84231899582543,364893870958302

%N G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - x^k)^2) ).

%H Seiichi Manyama, <a href="/A363547/b363547.txt">Table of n, a(n) for n = 0..1000</a>

%F A(x) = (1 - x)^2 * (B(x)/x - 2) where B(x) is the g.f. of A029857.

%o (PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-x^k)^2))+x*O(x^n))); Vec(A);

%Y Cf. A052855, A363548.

%Y Cf. A029857, A363545.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Jun 09 2023