login
A363546
G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - 3*x^k)) ).
6
1, 1, 5, 22, 105, 497, 2431, 11976, 59928, 302816, 1545660, 7955132, 41255625, 215378364, 1131134574, 5972272636, 31684600709, 168824599282, 903080385252, 4848038120323, 26110774945462, 141048622038068, 764026532321068, 4149020129689451
OFFSET
0,3
LINKS
FORMULA
A(x) = (1 - 3*x) * B(x) where B(x) is the g.f. of A363541.
a(n) = A363541(n) - 3*A363541(n-1) for n > 0.
PROG
(PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-3*x^k)))+x*O(x^n))); Vec(A);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 09 2023
STATUS
approved