login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308807
a(n) = 4*5^(n-1) + n.
1
5, 22, 103, 504, 2505, 12506, 62507, 312508, 1562509, 7812510, 39062511, 195312512, 976562513, 4882812514, 24414062515, 122070312516, 610351562517, 3051757812518, 15258789062519, 76293945312520, 381469726562521, 1907348632812522, 9536743164062523
OFFSET
1,1
COMMENTS
The last n decimal digits of 2^a(n) form the number 2^n.
FORMULA
a(n) = A005054(n) + n.
From Colin Barker, Jun 26 2019: (Start)
G.f.: x*(5 - 13*x + 4*x^2) / ((1 - x)^2*(1 - 5*x)).
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3) for n>3.
(End)
Conjectures confirmed by Robert Israel, Jun 28 2019
EXAMPLE
a(1) = 5, 2^5 = 32, the last digit of 32 is 2, which is 2^1.
a(2) = 22, 2^22 = 4194304, the last 2 digits of 4194304 are 04, which is 2^2.
MAPLE
seq(4*5^(n-1) + n, n=1..30); # Robert Israel, Jun 28 2019
MATHEMATICA
Table[4*5^(n-1)+n, {n, 30}] (* or *) LinearRecurrence[{7, -11, 5}, {5, 22, 103}, 30] (* Harvey P. Dale, Jun 27 2020 *)
PROG
(PARI) Vec(x*(5 - 13*x + 4*x^2) / ((1 - x)^2*(1 - 5*x)) + O(x^25)) \\ Colin Barker, Jun 29 2019
CROSSREFS
Sequence in context: A296044 A048251 A017971 * A017972 A363546 A296163
KEYWORD
nonn,easy
AUTHOR
Clive Tooth, Jun 25 2019
STATUS
approved