login
A296044
a(n) = [x^n] Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^n.
10
1, 1, 5, 22, 101, 481, 2330, 11425, 56549, 281911, 1413465, 7120136, 36006362, 182681916, 929461993, 4740491107, 24229115109, 124069449335, 636376573943, 3268955179686, 16814509004601, 86593280920756, 446437797872016, 2303948443259841, 11900990745759578, 61526182236027756
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] Product_{k>=1} ((1 - x^(4*k))/(1 - x^k))^n.
a(n) ~ c * d^n / sqrt(n), where d = 5.2749356339591798618290252741994029798069148326559... and c = 0.2726256757090475625917361066565981461455343437... - Vaclav Kotesovec, Dec 05 2017
MATHEMATICA
Table[SeriesCoefficient[Product[((1 + x^(2 k))/(1 - x^(2 k - 1)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[Product[((1 - x^(4 k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[(EllipticTheta[2, 0, x]/EllipticTheta[2, Pi/4, x^(1/2)]/(16 x)^(1/8))^n, {x, 0, n}], {n, 0, 25}]
(* Calculation of constant d: *) With[{k = 4}, 1/r /. FindRoot[{s == QPochhammer[(r*s)^k] / QPochhammer[r*s], k*(-(s*QPochhammer[r*s]*(Log[1 - (r*s)^k] + QPolyGamma[0, 1, (r*s)^k]) / Log[(r*s)^k]) + (r*s)^k * Derivative[0, 1][QPochhammer][(r*s)^k, (r*s)^k]) == s*QPochhammer[r*s] + s^2*(-(QPochhammer[r*s]*(Log[1 - r*s] + QPolyGamma[0, 1, r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 03 2017
STATUS
approved