login
A001937
Expansion of (psi(x^2) / psi(-x))^3 in powers of x where psi() is a Ramanujan theta function.
(Formerly M2785 N1120)
8
1, 3, 9, 22, 48, 99, 194, 363, 657, 1155, 1977, 3312, 5443, 8787, 13968, 21894, 33873, 51795, 78345, 117312, 174033, 255945, 373353, 540486, 776848, 1109040, 1573209, 2218198, 3109713, 4335840, 6014123, 8300811, 11402928, 15593702, 21232521, 28790667, 38884082
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The Cayley reference is actually to A187053. - Michael Somos, Jul 26 2012
REFERENCES
A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
A. Cayley, A memoir on the transformation of elliptic functions, Philosophical Transactions of the Royal Society of London (1874): 397-456; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, included in Vol. 9. [Annotated scan of pages 126-129]
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-3/8) * (eta(q^4) / eta(q))^3 in powers of q. - Michael Somos, Jul 26 2012
Euler transform of period 4 sequence [ 3, 3, 3, 0, ...]. - Michael Somos, Mar 06 2011
Convolution cube of A001935. A187053(n) = (-1)^n * a(n). - Michael Somos, Mar 06 2011
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k-1)))^3.
a(n) ~ 3^(1/4) * exp(sqrt(3*n/2)*Pi) / (16*2^(3/4)*n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
EXAMPLE
1 + 3*x + 9*x^2 + 22*x^3 + 48*x^4 + 99*x^5 + 194*x^6 + 363*x^7 + 657*x^8 + ...
q^3 + 3*q^11 + 9*q^19 + 22*q^27 + 48*q^35 + 99*q^43 + 194*q^51 + 363*q^59 + ...
MAPLE
g100:= mul((1+x^(2*k))/(1-x^(2*k-1)), k=1..50)^3:
S:= series(g100, x, 101):
seq(coeff(S, x, j), j=0..100); # Robert Israel, Nov 30 2015
MATHEMATICA
CoefficientList[ Series[Product[(1 - x^k)^(-3*Boole[Mod[k, 4] != 0]), {k, 1, 101}], {x, 0, 100}], x] (* Olivier GERARD, May 06 2009 *)
QP = QPochhammer; s = (QP[q^4]/QP[q])^3 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^3, n))} /* Michael Somos, Mar 06 2011 */
KEYWORD
nonn
EXTENSIONS
Corrected and extended by Simon Plouffe
Checked and more terms from Olivier GERARD, May 06 2009
STATUS
approved